More (mostly non-streaming) Spark

Advanced Spark / leftovers

- Strings
- RDD transformations
- Pandas functions
- User-defined functions (UDFs)
- Unions and joins
- Aggregations (GroupBy)

INFO319: Big Data

Strings

- from pyspark.sql.functions import *
- Standard string functions:
 - initcap, lower, upper, lit, ltrim, rtrim, rpad, lpad, trim
- Character translations:
 - translate(col, from_chars, to_chars)
- Regular expressions:
 - regexp_replace(df_column, from_regex, to_string)
 - regexp_extract(df:column, extr_regex, pos)
- JSON:
 - parse from JSON or extract JSON objects
 - JSON operations directly on strings

Resilient Distributed Datasets (RDDs)

• From exercise 1:

```
word_lists = texts.select(split(texts.text, ' ').alias('word_list'))
```

```
from pyspark.sql.functions import explode
words = word_lists.select(explode(word_lists.word_list).alias('word'))
```

• RDD solution:

text_rdd = texts.rdd word_rdd = text_rdd.flatMap(lambda row: row.text.split(' '))

from pyspark.sql.types import StructType, StructField, StringType
str_schema = StructType([StructField('word', StringType(), True)])

from pyspark.sql import Row
words = word_rdd.map(lambda word: Row(word)).toDF(str_schema)


```
INFO319: Big Data
```

Pandas functions

• From exercise 1:

from pyspark.sql.functions import split, explode
word_lists = texts.select(split(texts.text, ' ').alias('word_list'))
words = word_lists.select(explode(word_lists.word_list).alias('word'))

• Pandas solution:

import itertools
import pandas as pd # pip install pandas pyarrow

```
def word_map(dfs):
    for df in dfs:
        yield pd.DataFrame(
            itertools.chain(*df.text.apply(lambda t: t.split(' '))))
```

words = texts.mapInPandas(word_map, word_schema)

INFO319: Big Data

Pandas functions

 Easier to read Pandas solution: import itertools import pandas as pd

```
def word_map_df(df):
    word_list_df = df.text.apply(lambda t: t.split(' '))
    chained_list = itertools.chain(*word_list_df)
    return pd.DataFrame(chained_list)
```

```
def word_map(dfs):
    for df in dfs:
        yield word_map_df
```

words = texts.mapInPandas(word_map, word_schema)

INFO319: Big Data

User-Defined Functions

- User-defined functions (UDFs):
 - express custom transformations in Java, Scala, Python...
 - can use external libraries
 - take and return one or more columns
 - can be written in several different programming languages
 - operate on the data, row-by-row or frame-by-frame
 - need to be registered as temporary functions in a specific SparkSession
 - from pyspark.sql.functions import udf udf_func = udf(lambda x: func(x), SparkType())

- or @udf decorator

- · serialised and distributed to worker machines (executors)
- to use also in SQL statements
 - spark.udf.register("function_name", udf_func, SparkType())

INFO319: Big Data

UDF registration

- Spark:
 - serialises the function on the driver (e.g., to Java bytecode)
 - transfers it over the network to all executor processes
 - regardless of language
- Scala or Java functions:
 - run by the Java Virtual Machine (JVM) on the worker
- Python functions:
 - Spark starts a Python process on the worker
 - serializes the JVM-data to a Python-readable format
 - executes the function row by row on that data in the Python process
 - returns the results of the row operations to the JVM and Spark.

INFO319: Big Data

(c) Andreas L Opdahl, 2022

INFO319: Big Data

Performance warnings

- Scala/Java functions:
 - runs on JVM little performance penalty
 - careful about memory
 - a black-box to Spark
 - but misses some Spark optimisations
- Python:
 - starting a Python process
 - serializing data to Python and back to JVM:
 - expensive computationa
 - Spark cannot manage the memory of the worker
 - potentially the worker can fail
 - JVM and Python are competing for memory on the same machine
 - Write UDFs in Scala or Java even if you use Python overall!

INFO319: Big Data

(c) Andreas L Opdahl, 2022

٠

Aggregations

- Aggregating:
 - the act of collecting something together
 - a cornerstone of big-data analytics
 - also used in Pandas, SQL, SPARQL, spreadsheets...
- An aggregation specifies:
 - a grouping strategy that groups (splits) the rows in the DataFrame
 - overlapping or not, and completely or not
 - one or more aggregation functions
 - transforms one or more columns of each group (split) of input rows
 - must produce one result for each group (split) of input rows
 - the function results for each group (split) of input rows becomes an output row

INFO319: Big Data

Aggregations: grouping strategies

- No grouping: aggregation summarises the whole DataFrame
- Key grouping: group by one or more keys (columns)
- Windowing: a group per row, but also including «neighbouring» rows
- Grouping set:
 - aggregate at several levels in one operation
 - a "rollup" makes it possible for you to specify one or more keys, which will be summarized hierarchically
 - a "cube" allows you to specify one or more keys to transform the value columns, which will be summarized across all combinations of columns
- Each grouping returns a RelationalGroupedDataset on which we specify our aggregations

Aggregations: aggregation functions

- Aggregation functions work as in Pandas, SQL, SPARQL, spreadsheets...
 - from pyspark.sql.functions import *
 - counting: count, countDistinct, approx_count_distinct
 - picking rows: first, last
 - statistics:
 - min, max, sum, sumDistinct, avg
 - var_pop, stddev_pop, var_samp, stddev_samp
 - skewness, kurtosis, correlation, covariance
 - aggregating to complex values:
 - collect_set, collect_list
 - for example, the result can be passed on to UDFs...
 - User-Defined Aggregation Functions (UDAFs)

INFO319: Big Data

Aggregations: rollups and cubes

- Performs several group-by style calculations in one go
 - rollup(): treats elements hierarchically
 - cube(): does the same thing across all combinations of columns
- Example:
 - two columns: time (a «Date» column) and location (a «Country» column)
 - rollup() calculates aggregations of:
 - all rows
 - all times
 - all time and location *combinations*
 - *cube()* also calculates aggregations of:
 - all locations

INFO319: Big Data

Union

- Concatenating and appending rows
- To append to an immutable DataFrame:
 - union the original DataFrame along with the new DataFrame
 - make sure that they have the same schema and number of columns
 - otherwise, the union will fail

Join expressions (CZ, chapter 10)

- A join:
 - brings together two sets of data, the left and the right
 - compares the value of one or more keys of the left and right
 - evaluates the result of a join expression
- Join expression:
 - determines whether Spark should bring together the left set of data with the right set of data
 - most common is equi-join:
 - if the specified keys in one row from the left and one row from the right datasets are equal, the results contains two to rows combined
 - many other join expressions
 - similar to Pandas and SQL

Join types

- Determines what should be in the result set:
 - inner (keep rows with keys that exist in the left and right datasets)
 - outer (keep rows with keys in either the left or right datasets)
 - left outer (keep rows with keys in the left dataset)
 - right outer (keep rows with keys in the right dataset)
 - left semi (keep the rows in the left, and only the left, dataset where the key appears in the right dataset)
 - left anti (keep the rows in the left, and only the left, dataset where they do not appear in the right dataset)
 - natural (perform a join by implicitly matching the columns between the two datasets with the same names)
 - cross (or Cartesian) (match every row in the left dataset with every row in the right dataset)

How Spark performs joins

- Depends on:
 - per node computation strategy
 - node-to-node communication strategy:
 - shuffle join: rows from both tables are reshuffled by join keys
 - broadcast join: the smallest table is copied to all workers
- Big table-to-big table:
 - uses shuffle join
 - expensive because the network can become congested with traffic
 - best if the data are suitably partitioned already...

Driver Executor

Partition in Table 1 Partition in Table 2 (small table) (big table)

How Spark performs joins

- Big table-to-small table:
 - uses broadcast join
 - replicates the smallest DataFrame onto every worker node
 - prevents all-to-all communication during the entire join process
 - joins will be performed on every single node individually
 - CPU is the biggest bottleneck.
- Little table-to-little table:
 - let Spark decide
 - can also force a broadcast join