
More
(mostly non-streaming)

Spark

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Advanced Spark / leftovers
• Strings
• RDD transformations
• Pandas functions
• User-defined functions (UDFs)
• Unions and joins
• Aggregations (GroupBy)

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Strings
• from pyspark.sql.functions import *
• Standard string functions:

– initcap, lower, upper, lit, ltrim, rtrim, rpad, lpad, trim
• Character translations:

– translate(col, from_chars, to_chars)
• Regular expressions:

– regexp_replace(df_column, from_regex, to_string)
– regexp_extract(df:column, extr_regex, pos)

• JSON:
– parse from JSON or extract JSON objects
– JSON operations directly on strings

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Resilient Distributed Datasets (RDDs)
• From exercise 1:

 word_lists = texts.select(split(texts.text, ' ').alias('word_list'))

 from pyspark.sql.functions import explode
 words = word_lists.select(explode(word_lists.word_list).alias('word'))

• RDD solution:
 text_rdd = texts.rdd
 word_rdd = text_rdd.flatMap(lambda row: row.text.split(' '))

 from pyspark.sql.types import StructType, StructField, StringType
 str_schema = StructType([StructField('word', StringType(), True)])

 from pyspark.sql import Row
 words = word_rdd.map(lambda word: Row(word)).toDF(str_schema)

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Pandas functions
• From exercise 1:

 from pyspark.sql.functions import split, explode
 word_lists = texts.select(split(texts.text, ' ').alias('word_list'))
 words = word_lists.select(explode(word_lists.word_list).alias('word'))

• Pandas solution:
import itertools
import pandas as pd # pip install pandas pyarrow

def word_map(dfs):
 for df in dfs:
 yield pd.DataFrame(
 itertools.chain(*df.text.apply(lambda t: t.split(' '))))

words = texts.mapInPandas(word_map, word_schema)

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Pandas functions
• Easier to read Pandas solution:

 import itertools
 import pandas as pd

 def word_map_df(df):
 word_list_df = df.text.apply(lambda t: t.split(' '))
 chained_list = itertools.chain(*word_list_df)
 return pd.DataFrame(chained_list)

 def word_map(dfs):
 for df in dfs:
 yield word_map_df

 words = texts.mapInPandas(word_map, word_schema)

(c) Andreas L Opdahl, 2022 INFO319: Big Data

User-Defined Functions
• User-defined functions (UDFs):

– express custom transformations in Java, Scala, Python...
– can use external libraries
– take and return one or more columns
– can be written in several different programming languages
– operate on the data, row-by-row or frame-by-frame
– need to be registered as temporary functions in a specific SparkSession

• from pyspark.sql.functions import udf
udf_func = udf(lambda x: func(x), SparkType())

– or @udf decorator
• serialised and distributed to worker machines (executors)

– to use also in SQL statements
– spark.udf.register("function_name", udf_func, SparkType())

(c) Andreas L Opdahl, 2022 INFO319: Big Data

UDF registration
• Spark:

– serialises the function on the driver (e.g., to Java bytecode)
– transfers it over the network to all executor processes
– regardless of language

• Scala or Java functions:
– run by the Java Virtual Machine (JVM) on the worker

• Python functions:
– Spark starts a Python process on the worker
– serializes the JVM-data to a Python-readable format
– executes the function row by row on that data in the Python process
– returns the results of the row operations to the JVM and Spark.

(c) Andreas L Opdahl, 2022 INFO319: Big Data

UDF in Python

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Performance warnings
• Scala/Java functions:

– runs on JVM - little performance penalty
– careful about memory
– a black-box to Spark
– but misses some Spark optimisations

• Python:
– starting a Python process
– serializing data to Python – and back to JVM:

• expensive computationa
– Spark cannot manage the memory of the worker
– potentially the worker can fail
– JVM and Python are competing for memory on the same machine

• Write UDFs in Scala or Java even if you use Python overall!

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Aggregations
• Aggregating:

– the act of collecting something together
– a cornerstone of big-data analytics
– also used in Pandas, SQL, SPARQL, spreadsheets...

• An aggregation specifies:
– a grouping strategy that groups (splits) the rows in the DataFrame

• overlapping or not, and completely or not
– one or more aggregation functions

• transforms one or more columns of each group (split) of input rows
• must produce one result for each group (split) of input rows
• the function results for each group (split) of input rows

becomes an output row

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Aggregations: grouping strategies
• No grouping: aggregation summarises the whole DataFrame
• Key grouping: group by one or more keys (columns)
• Windowing: a group per row, but also including «neighbouring» rows
• Grouping set:

– aggregate at several levels in one operation
– a “rollup” makes it possible for you to specify one or more keys, which

will be summarized hierarchically
– a “cube” allows you to specify one or more keys to transform the value

columns, which will be summarized across all combinations of columns
• Each grouping returns a RelationalGroupedDataset on which

we specify our aggregations

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Aggregations: aggregation functions
• Aggregation functions work as in Pandas, SQL, SPARQL, spreadsheets...

– from pyspark.sql.functions import *
– counting: count, countDistinct, approx_count_distinct
– picking rows: first, last
– statistics:

• min, max, sum, sumDistinct, avg
• var_pop, stddev_pop, var_samp, stddev_samp
• skewness, kurtosis, correlation, covariance

– aggregating to complex values:
• collect_set, collect_list
• for example, the result can be passed on to UDFs...

– User-Defined Aggregation Functions (UDAFs)

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Aggregations: rollups and cubes
• Performs several group-by style calculations in one go

– rollup(): treats elements hierarchically
– cube(): does the same thing across all combinations of columns

• Example:
– two columns: time (a «Date» column) and location (a «Country» column)
– rollup() calculates aggregations of:

• all rows
• all times
• all time and location combinations

– cube() also calculates aggregations of:
• all locations

Union
• Concatenating and appending rows
• To append to an immutable DataFrame:

– union the original DataFrame along with the new DataFrame
– make sure that they have the same schema and number of columns

• otherwise, the union will fail

Join expressions (CZ, chapter 10)
• A join:

– brings together two sets of data, the left and the right
– compares the value of one or more keys of the left and right
– evaluates the result of a join expression

• Join expression:
– determines whether Spark should bring together the left set of data with

the right set of data
– most common is equi-join:

• if the specified keys in one row from the left and one row from the
right datasets are equal, the results contains two to rows combined

– many other join expressions
• similar to Pandas and SQL

Join types
• Determines what should be in the result set:

– inner (keep rows with keys that exist in the left and right datasets)
– outer (keep rows with keys in either the left or right datasets)
– left outer (keep rows with keys in the left dataset)
– right outer (keep rows with keys in the right dataset)
– left semi (keep the rows in the left, and only the left, dataset where the

key appears in the right dataset)
– left anti (keep the rows in the left, and only the left, dataset where they

do not appear in the right dataset)
– natural (perform a join by implicitly matching the columns between the

two datasets with the same names)
– cross (or Cartesian) (match every row in the left dataset with every row

in the right dataset)

How Spark performs joins
• Depends on:

– per node computation strategy
– node-to-node communication strategy:

• shuffle join: rows from both tables are reshuffled by join keys
• broadcast join: the smallest table is copied to all workers

• Big table–to–big table:
– uses shuffle join
– expensive because the network can become congested with traffic
– best if the data are suitably partitioned already...

How Spark performs joins
• Big table–to–small table:

– uses broadcast join
– replicates the smallest DataFrame onto every worker node
– prevents all-to-all communication during the entire join process
– joins will be performed on every single node individually
– CPU is the biggest bottleneck.

• Little table–to–little table:
– let Spark decide
– can also force a broadcast join

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

