Session 2

- Data & data sources
- Data from Twitter streams
- More Spark
- Exercises 1 & 2
- INFO319:
 - practical information
 - background / expectations
 - programming projects
 - essay

INFO319: Big Data

Data (Kitchin's chapter 1, also a little from 2-3)

(c) Andreas L Opdahl, 2022

What are data?

- Not general agreement!
- Usually agreed on properties:
 - material (matter or energy at bottom)
 - this material basis can vary (lack of uniformity)
 - the variations (or lack of v.) represent something
- Representation:
 - direct correspondence:
 - "the property/state of the data corresponds to some property/state of something else" (natural/intentional)
 - symbolic correspondence:
 - "the data contain symbolic language that describes something else" (intentional)

(c) Andreas L Opdahl, 2022

Luciano Floridi: Information – A Very Short Introduction

What are data?

- "Non-data": material variations (or lack of v.) that do not represent anything
- "Natural" data, data in the wild: material variations (or lack of v.) in nature that represent something else
- Human-made, artificial data:
 We are (mostly) here!
 - material variations (or lack of v.) that represent something else by human action
 - direct, "hand-made" artificial data
 - indirect, machine-generated artificial data

 - non-rivalrous, non-excludable, marginally free
- Data do not only represent, they also constitute reality

INFO319: Big Data

(c) Andreas L Opdahl, 2022

Luciano Floridi: Information – A Very Short Introduction

Data are not information!

- A common distinction:
 - data may accommodate multiple interpretations
 - information = data + meaning
 - ...the interpretation has become (more) fixed
- Information is carried by (constituted by) data,
 - but is not bound to particular data:
 - a letter can be scanned into a PDF file.
 - when the letter is shredded, the data are lost.
 - but the information is still there in the PDF
- Data are in themselves, but the same information can be carried by different data in different forms at the same time (or different times)

(c) Andreas L Opdahl, 2022

Luciano Floridi: Information – A Very Short Introduction

(Some) types of data

- Analog and digital
- Qualitative and quantitative
 - nominal, ordinal, interval, ratio for quantitative
- Structured, semi-structured and unstructured
- Primary (main purpose) and exhaust (side effect)
 - secondary, tertiary
- Metadata:
 - about content: syntax, semantics
 - about dataset: descriptive, structural, administrative
- Indexical and attributive
- Small and big!

(c) Andreas L Opdahl, 2022

Luciano Floridi: Information – A Very Short Introduction

Shapers of data

- Collected data are not neutral, but shaped by:
 - prevailing power structures
 - background and interests of collectors
 - data generation context
 - field of view / sampling frame
 - technology and platform used
 - data model / ontology
 - regulatory environment:
 - e.g., privacy, data protection, security
- Big data tend to be opportunistic / convenient
 - small data tend to be purposeful / targetted

INFO319: Big Data

Big and small data

	Small data	Big data
Volume	Limited to large	Large to very large
<u>Exhaustivity</u>	Samples	Entire populations
Resolution and identification	Coarse and weak to tight	Tight and strong
Relationality	Weak to strong	Strong
<u>Velocity</u>	Slow, freeze-framed, bundled	Fast, continuous
Variety	Limited to wide	Wide
Flexible and scalable	Low to middling	High
Origin	Targetted, purposeful	Convenient, opportunistic
Purpose	Specific	Generic

Qualities of open data sets and sites

- Clean, high-quality, validated, interoperable
- Comply with data standards
- Associated metadata and documentation
- Preservation, backup and auditing policies
- Reuse, privacy and ethics policies
- Administrative arrangements, management organisation, governance mechanism, financial stability
- Long-term plan for development and sustainability

(c) Andreas L Opdahl, 2022

Open data

- Example definition:
 - "knowledge is open if anyone is free to access, use, modify, and share it
 - subject, at most, to measures that preserve provenance and openness"
- Requirements:
 - technically open: open, standard format, physical availability, no-DRM or similar constraints (DRM: Digital Rights Management software)
 - *legally open:* no legal restrictions, explicit open licences
- Examples:
 - OpenDefinition of Knowledge: http://opendefinition.org/od/2.1/en/
 - Open Government Data, 8+7 principles: https://opengovdata.org/
- From product to service thinking?

INFO319: Big Data

Why open data?

- Long tradition in some countries
 - ... other are opening up
- Drivers:
 - measure success of (public) organisations, decision making, transparency, accountability, value for money
 - active and informed citizenship: choosing schools and hospitals, political involvement, participative democracy, social innovation
 - evidence-based monitoring and decision making, improved operational efficiency, competence and productivity, using information across departments, broader ("holistic") views of organisations, more eyes
 - low economic value \rightarrow high commercial value, e.g. map data
 - brand enrichment, customer contact, trust and reputation

INFO319: Big Data

Why open data?

- Obstacles:
 - first-time preparation has a cost
 - requires repurposing
 - curation (anonymity, aggregation)
 - developing new systems / services
 - partly market-financed state agencies
 - legal limitations:
 - public / private sector competition
 - lobbying from third-party resellers

INFO319: Big Data

Funding open data

- Arguments for direct government backing:
 - increased societal costs are offset by reduced company costs
 - free additional labour, improved data quality, crowd innovation
 - simpler, better, more efficient customer-handling
 - diverse consumer surplus value
 - new innovations and markets (GPS!), corporate revenue, corporate tax

Funding open data

- Funding models for open data:
 - premium version of free product/service
 - freemium product/service (graded options)
 - open source
 - free trial (razor), then paid (blades)
 - value-added services (i.e., semantics)
 - product/service store
 - advertising
 - customisation
- ...resembles the funding models for open software!

INFO319: Big Data

Concern: neoliberal and market interests

- Open data are not neutral
- Example claims:
 - driven by commercial forces
 - exploiting public goods for private benefit
 - in turn weakens public data resources
 - must perhaps buy back from private sector
 - public accountability drives neoliberal, NPM reorganisation
 - transparency talk is just rhetorical
 - business interests in disguise
 - not similar support for whistleblowing, IP liberalisation, DRMrestrictions etc.

Concern: benefits the already empowered

- Open data is not all
 - also: which data, and how they can change society
- Example claims:
 - open public data enhance value of privately held data
 - data are not neutral:
 - which data to collect, generate and make open about who and what is highly political
 - which interests are included, which excluded?
 - leveraging open data is labour and skill intensive: technological, contextual, argumentative...
 - two types of public data: operational and citizen

INFO319: Big Data

Concern: sustainability and utility

- Supply focus
 - many open data sites / sets are low-hanging fruit
 - more interesting data sets may require curation
 - e.g., repurposing, privacy concerns, regulation
 - created by volunteers, short-term projects
 - less focus on maintenance over time
 - danger of vicious cycles
 - shift needed:
 - holdings \rightarrow archives \rightarrow infrastructures

INFO319: Big Data

Concern: sustainability and utility

- Supply focus
 - many open data sites / sets are low-hanging fruit
 - more interesting data sets may require curation
 - e.g., repurposing, privacy concerns, regulation
 - created by volunteers, short-term projects
 - less focus on maintenance over time
 - danger of vicious cycles
 - shift needed:
 - holdings \rightarrow archives \rightarrow infrastructures

INFO319: Big Data

Enablers of big data

Enablers of big data

- Computation
 - "Moore's law" of transistor numbers (1965)
 - from more powerful cores to more cores (20005)
- Networking
 - "Gilder's law" of network bandwidth (2000):
 - global bandwith doubles every 6 months
- Storage (cloud, *aaS, NOSQL)
- Pervasive and ubiquitous computing
 - sensors and actuators
 - from dumb to smart things (cars)
 - exhaustive data collection
 - "ambient computing", "the age of everyware"
- Standardised identifiers (e.g., the URIs again)

INFO319: Big Data

Pervasive versus ubiquitous computing

- Pervasive computing:
 - computing "in everything"
 - make them interactive and smart
 - divergent: more and more things become smart
 - needs situational awareness
- Ubiquitous computing:
 - computing "in every place"
 - moves with the person
 - convergent: smart things we carry do more and more
 - needs context and location awareness

INFO319: Big Data

Overlapping concepts / ideas

- Internet of Things (IoT):
 - sensors, actuators, other devices are on the internet
 - TCP / IP \rightarrow IP4 / 6 addresses of their own
 - ...connected through gateways
- Web of Things (WoT):
 - web APIs, HTTP, HTML / CSS / JS dashboards / UIs
 - sensoring, actuating etc. -as-a-Service
- Cloud of Things (ClouT):

(c) Andreas L Opdahl, 2022

- gateways and services can be hosted
- digital twins with histories, extrapolations, simulations...
- the *cloud*, the *edge* and the *fog*
- ...a bit hyped as usual, but at least a quantitative change going on

Enablers of big data

- Indexicality
 - growth of unique identifiers
 - people: user names/handles, personal numbers / SSNs, passports, driver's licences, health cards, biometry, IMSIs
 - things (and information): product type codes (bar code, QR code), RFID for individual products, auto passes, MAC addresses (medium access control), IMEIs, URIs, including ISBNs, ISSNs, DOIs, etc.
 - places: post codes, addresses, geo coordinates
- Machine-readable identification
 - more and more are becoming digital
 - ...and remotely readable

INFO319: Big Data

Sources of big data

- Three types:
 - directed
 - automated
 - volunteered
- Directed data collection
 - organised and structured surveillance
 - personal or through technological lens
 - census, government forms, inspections, CCTV cams
 - surveillance technology is becoming *digital, smarter, directable, internetworked…*
- Big data too are a *representation* and a *sample*
 - there are no "raw", only "cooked" big data

INFO319: Big Data

Automated data collection

- Automated surveillance
 - e.g., smart electricity meters, electronic transportation tickets, passenger counting systems, car tolls, radar/lidar speed guns, ANPR
- Digital devices
 - smart phones/tablets + lots of others
 - actively produce data
 - primary: cameras, videos, GPS units, medical devices
 - exhaust: mobile phones (also primary), cable boxes
 - logjects = objects that log their (+ their users') history
 - object logs can also be re-combined
 - e.g., GPS-car data combination

INFO319: Big Data

Automated data collection

- Interaction data
 - all ICT-based transactions leave traces
 - using a web shop, net bank, ATM
 - sending an email
 - accessing the internet from home or a mobile device
- Scan data
 - machine-readable identification codes
 - barcodes, QR ("Quick Response") codes
 - magnetic cards, chip card/smart card/ICC
- Sensor (sensed) data
 - inexpensive sensors generate continuous data streams
 - smart cities gauging noise, temperature, light, CO2...

INFO319: Big Data

Volunteered data collection

- Social media, collective projects (online)
 - production + consumption = prosumption
- Transactions
 - voluntary registration, clickstreams, review data
- Some of the automated collection was volunteered:
 - actively produced data
 - primary: cameras, videos, GPS units, medical devices
 - some logjects (objects that log history)
- Sousveillance
 - (fr.) sur-: above, sous-: below
 - self-monitoring, e.g.,
 wearable fitness equipment, dieting apps, ...

Volunteered data collection

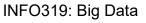
- Social media
- Crowdsourcing
 - to create one new product
 - to create many new products/concepts/ideas
 - to assess many existing products/concepts/ideas
- Citizen science

(c) Andreas L Opdahl, 2022

Some big data sources for news

Example big data sources

- Social media (pre and post news):
 - Twitter's open API (https://developer.twitter.com/en)
 - Meta's CrowdTangle API (https://www.crowdtangle.com/)
 - YouTube Search API (https://developers.google.com/youtube/v3/docs/search/list)
 - Reddit (https://www.reddit.com/dev/api)
 - TikTok API (forthoming)
- Published news (post news ...from raw to processed...):
 - NewsAPI (https://newsapi.org/)
 - EU Media Monitor (https://emm.newsbrief.eu/overview.html)
 - DataMinR (https://www.dataminr.com/)
 - GDELT (https://www.gdeltproject.org/)



The GDELT project (\rightarrow from INFO216)

- Global Database of Events, Language, and Tone (GDELT)
 - free open platform
 - monitors the world's broadcast, print, and web news
 - focus on crises, but much broader in practice
 - globally in over 100 languages
 - identifies people, locations, organizations, themes, sources, emotions, counts, quotes, images, events
 - "can we map happiness and conflict, provide insight to vulnerable populations and even potentially forecast global conflict in ways that allow us as a society to come together to deescalate tensions, counter extremism, and break down cultural barriers?"

(c) Andreas L Opdahl, 2022

https://www.gdeltproject.org/

The GDELT project

- Archives back to 1979 (expanding back to 1800)
- Increasingly integrating social media
- Translations from 65 languages into English
- Supported by Google
 - runs in the Google Cloud
- Almost a knowledge graph, but
 - not native RDF
 - not fully linked
 - no ontology

The GDELT project: data streams

- Downloadable CSV files (every 15 minutes)
 - http://data.gdeltproject.org/gdeltv2/lastupdate.txt
 - Events (...export.CSV, ~400k)
 - low-level actor event type actor triples
 - Mentions (...mentions.CSV, ~600k)
 - where in and which source is each event mentioned?
 - Global Knowledge Graph (...gkg.CSV, ~50M)
 - which people, locations, organizations, themes, sources, emotions, counts, quotes, images, events are mentioned where and in which source?

https://www.gdeltproject.org/

- Also available as Google BigQuery tables
- Lots of other datasets and streams, raw and analysed, native language or translated to English

INFO319: Big Data

The GDELT project: data streams

- Other data streams:
 - Visual GKG
 - codifying the world's news images in real time
 - random sampling, Google's Vision API
 - Global Entity Graph
 - experimental, random sampling of news articles
 - deep learning, Google's Natural Language API
 - provides Wikidata links for entities
 - Global Relationship Graph
 - experimental, related to the global entity graph
 - · extracts verbs and the words in their context
 - groups new articles with similar verbs-in-context

(c) Andreas L Opdahl, 2022

https://www.gdeltproject.org/

The GDELT project: Events 2.0

- For each event:
 - global event id and datetime
 - actor 1 and 2:
 - name (person, organisation, location, ethnicity, religion, type) and CAMEO code
 - event:
 - CAMEO code and importance of event type
 - numbers of mentions and sources, tone
 - geography
- Codebooks
 - http://data.gdeltproject.org/documentation/GDELT-Event_Codebook-V2.0.pd
 - http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf

(c) Andreas L Opdahl, 2022

https://www.gdeltproject.org/

The GDELT project: Mentions 2.0

- For each event
 - global event id and datetime
 - mention type and datetime
 - source name and identifier (e.g., a URL)
 - sentence number
 - actor 1 and 2 mentions (character indices)
 - confidence
 - source length and tone
- Codebook
 - http://data.gdeltproject.org/documentation/ GDELT-Event_Codebook-V2.0.pdf

(c) Andreas L Opdahl, 2022

https://www.gdeltproject.org/

The GDELT project: GKG 2.0

- For each document:
 - record id and datetime
 - source and document identifier (e.g., a URL)
 - keywords/themes (taxonomies of 50k keywords)
 - person and organisation names and types
 - locations, they types, names, geo-coordinates
 - counts, their types and counted objects
 - average tone, positive/negative score, polarity
 - …and lots of other stuff
- Codebook
 - http://data.gdeltproject.org/documentation/
 GDELT-Global_Knowledge_Graph_Codebook-V2.1.pdf

(c) Andreas L Opdahl, 2022

https://www.gdeltproject.org/

