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Disinformation, misinformation and fake news

• Disinformation: “dissemination of false information with the deliberate intent to 
deceive or mislead”

• Misinformation: “the unintentional dissemination of false information”  

• Fake news: “originally U.S. news that conveys or incorporates false, fabricated, or 
deliberately misleading information, or that is characterized as or accused of doing 
so”
 Fake news is  a typical example of online disinformation. 
 Six types of fake news include satire, fabrication, parody, photo manipulation, advertising, 

and propaganda



Fact-Checking
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"Seek truth and report it" 
(The Society of Professional Journalists Code of Ethics) 
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Internal fact-checking

• Internal fact-checking (dated back to 1920s): the verification routines prior to 
publication to ensure factual accuracy.

 Searching for common errors such as in numbers, statistics, names, dates, superlatives etc.
 Checking the primary sources and verify the facts 
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External fact-checking

• External fact-checking (emerged in 2000): the evidence-based analysis of 
the truthfulness of argumentative claims to publish systematic assessment 
articles.

 Fact-checking of claims particularly in political debates, speeches and interviews
 Precise investigation of assortments of exaggerations, false/misleading notes, and ambiguous 

factual statements
 Has also given rise to dedicated fact-checking outlets such as PolitiFact and FactCheck.org



7

Fake News Detection

• Two primary categories of fake news detection methods: 
 Network-based: rely on social network behavior analysis, particularly on the network formed 

by interactions between people
 Content-based: ground in text analysis such as linguistic features, content cues, deception 

modelling, clustering and classification 

• The techniques in automated fact-checking and content-based fake 
news detection overlap to some extent.
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Manual Fact-checking
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Areas of interest in news industry

• The augmented newsroom 
 New technology to help journalists work more efficiently

 New methods for verification of text information and image/video authenticity 

• Trustworthy, secure, transparent, explainable, and unbiased technologies 
 Technology as a transparent unbiased assistant, not as black boxes 

 Build trustworthy and secure tools for journalists 

• New technology to improve business efficiency and sustainability 
ü Discover new areas of use of AI, ML, semantics, and metadata 
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Areas of interest in NLP landscape

• Automated (assistance for) fact-checking
 A pipeline of fully automated fact-checking

 Automated fact-checking with human in the loop

 Knowledge enhanced fact-checking

 ...

• Fact-checking in NLG
 Post-processing of artificially generated text such as in debaters and question answering

 Factual error correction for extractive summarization
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The Pipeline of Automated Fact-checking

Claim 
detection

Evidence 
retrieval

Claim 
verification

Factual verification

Stance detection

Explanation 
generation

Rationale selectionDocument retrieval

Claim Matching
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NLP and machine learning methods

• NLP Features: 
 Name Entity Recognition
 Part of Speech Tagging 
 Dependency Parsing
 Word Embedding
 Stance Detection
 ...

• Neural Language Models: 
 BiLSTM
 BERT and its variations
 T5
 …

• Traditional ML: 
ü Feature Selection
ü Classification: SVM, DT, BC

• Knowledge graphs: 
ü K-BERT
ü Knowledge linker
ü ClaimKG

• Information Retrieval:
 BM25
 LM
 PL2
 ...
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Some Useful Python Tools

• Beautifulsoup4:  a library to scrape information from web pages. 

• Urllib: a package that collects several modules for working with URLs

• googlesearch-python: a library for searching Google using requests and BeautifulSoup4 to 
scrape Google.

• nltk: a suite of libraries and programs for symbolic and statistical NLP

• SpaCy: an open-source software python library used in advanced natural language processing 
and machine learning to build information extraction, natural language understanding systems, 
and to pre-process text for deep learning

• Sklearn: the most useful and robust library for machine learning in Python

• PyTorch: an open-source machine learning framework that accelerates the path from research 
prototyping to production deployment

• TensorFlow: a foundation library that can be used to create Deep Learning models directly or 
by using wrapper libraries that simplify the process built on top of TensorFlow
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Claim Detection

• All other components need to rely on the output of this stage. 

• It aims to relief the burden of identifying claims for fact-checkers.

• For instance:
 “He voted against the first gulf war” can be deemed a claim that should be fact-checked. 
 “I think it’s time to talk about the future” is not a claim that should be fact-checked.

• One can also distinguish between check-worthy vs non-check-worthy claims. For Example: 
 “the government invested more than 10 billion last year in education” is a claim that is worthy of fact-checking
 “my friend had a coffee this morning for breakfast” may not be worthy of fact-checking.

• The problem is formulated as having a set of sentences as input (e.g. originating from a debate 
or conversation), and is tackled as 
 a classification task, where a binary decision is made on whether each input sentence constitutes a claim or not
 or a ranking task, where input sentences are ranked by check-worthiness, prioritizing top claims on top 

positions of the list.
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Claim Matching
• Claim matching consists in determining whether this is a claim that exists in the 

database and can be resolved by a previous fact-check. 

• The task is formulated as: 
 given a check-worthy claim as input, 
 and a database of previously fact-checked claims, 
 determine if any of the claims in the database is related to the input; in this case, the new claim 

would not need fact-checking again, as it was fact-checked in the past. 
 It is normally framed as a ranking task, where claims in the database are ranked based on their 

similarity to the input claim.

• Two released datasets: one based on PolitiFact and the other based on Snopes. 

• Initial explorations using BM25 and BERT-based models respectively.

A ranking function used by search engines to estimate 
the relevance of documents to a given search query

https://en.wikipedia.org/wiki/Ranking_function
https://en.wikipedia.org/wiki/Search_engine
https://en.wikipedia.org/wiki/Relevance_(information_retrieval)
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Evidence Retrieval

• Evidence retrieval is conventionally addressed in two steps: 
 document retrieval: the task of retrieving relevant documents that supports the prediction of a 

claim’s veracity
 rationale selection: the task of selecting directly relevant sentences out of the retrieved 

documents to get final supporting evidence for claim verification 

• Two approaches
 To limit evidence to only trusted resource such as Wikipedia, fact-checking websites, peer-

reviewed academic papers, and government documents, achieving substantial coverage of 
information.

 To verify the claim against existing knowledge bases, this faces bigger challenges in terms of 
coverage of reliable information: existing knowledge bases tend to be too small to cover 
sufficient information for claim validation purposes
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Claim Verification

• Claim verification is commonly addressed as a text classification task by NLP 
researchers: 

 Given a claim under investigation and its retrieved evidence, models need to reach a verdict of 
the claim, which may be ‘SUPPORT’, ‘CONTRADICTION’ or ‘NOT ENOUGH INFORMATION’.

 Some other datasets include other labels such as ‘mostly-true’, ‘half-true’, ‘pants-fire’, ‘most 
false’, ‘most true’ and ‘other’, whose finer granularity is more difficult to tackle through automated 
means and are sometimes collapsed into fewer labels. 

• Claim verification usually includes providing rationale sentences or evidence 
passages as explanation 

 A few efforts on generating justification 
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Examples from Previous Studies 

ClaimBuster

FEVER

CLEF 
CheckThat!
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ClaimBuster

• 2015: A team at the University of Texas at Arlington developed the ClaimBuster algorithm to 
automate the process of finding factual claims in political transcripts.

 The data was derived from transcripts of U.S. presidential debates from 1960 to 2012. 

 Sentence categorized into three categories: NFS, UFS, and CFS.

 Proposed system: a set of lexical, syntactic, and semantic features --> feature selection --> traditional 
classifiers (NB, SVM and RF)

• 2016: Tested in real-time during the live coverage of all primary and general debates 
throughout the 2016 U.S. election.

 Post-hoc analysis of the claims checked by professional fact-checkers at CNN, PolitiFact.com, and 
FactCheck.org reveals a highly positive correlation in deciding which claims to check.
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2017: ClaimBuster with Expanded Features
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 CLEF-2020 CheckThat! Lab

Task 5 complements the lab. It is as Task 1, but on political debates ad speeches rather than on 
tweets: given a debate segmented into sentences, together with speaker information, prioritize 
sentences for fact-checking.
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 CLEF-2021 CheckThat! Lab

Arabic, Bulgarian, English, Spanish, and Turkish
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 CLEF-2022 CheckThat! Lab 

The CheckThat! lab aims at fighting misinformation and disinformation in social 
media, in political debates and in the news, with focus on three tasks (in seven 
languages: Arabic, Bulgarian, Dutch, English, German, Spanish, and Turkish).

• Task 1: Fighting the COVID-19 infodemic

• Task 2: Detecting previously fact-checked claims

• Task 3: Fake news detection

 https://sites.google.com/view/clef2022-checkthat

https://sites.google.com/view/clef2022-checkthat
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2018: FEVER

• Contains 185,445 human-generated claims labeled as SUPPORTED, REFUTED or 
NOTENOUGHINFO. 

• Generated by paraphrasing facts from Wikipedia and mutating them in a variety of 
ways.

• For each claim annotators selected evidence in the form of sentences from 
Wikipedia.

• FEVER shared task: label claims with the correct class and return the sentence(s) 
forming the necessary evidence for the assigned label.



Performance
CLEF-2021 CheckThat! 
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Task MAP*
Check-Worthiness of Tweets 0.224
Check-Worthiness of Debates/Speeches 0.402
Detecting Previously Fact-Checked Claims in Tweets 0.883
Detecting Previously Fact-Checked Claims in Political 
Debates and Speeches

0.346

Multi-Class Fake News Detection of News Articles 0.853**
Topical Domain Identification of News Articles 0.905**
*Mean Average Precision
**Accuracy



Bill Adair
June 16, 2021: 
Last summer during the Democratic convention, former Iowa 
Gov. Tom Vilsack said this: “The powerful storm that swept 
through Iowa last week has taken a terrible toll on our farmers 
……”
But Squash (it was really Google Cloud) translated it as 
“Armpit sweat through the last week is taking a terrible toll 
on our farmers.”

Duke’s 
automated fact-
checking platfor

m
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https://www.poynter.org/fact-checking/2021/the-lessons-of-squash-the-first-automated-fact-checking-platform/

https://www.poynter.org/author/badair/
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Challenges Ahead  
1. Data:

• Most data sets are in English
• High quality annotated data of naturally occurring claims is scarce
• Data sets are usually biased

2. Claim difficulty
• Claims have vague and diverse conceptualization. 
• Ambiguity is a natural obstacle.
• Given the appropriate evidence, natural language inference could be difficult . 
• Some claims require a multi-hop reasoning chain which is difficult to be automated

3. Evidence
• Previously checked claims are not always the solution
• Retrieving evidence in the wild is difficult (an understudied task)
• Trustworthiness: High quality sources such as established news outlets, accredited journalism, scientific 

research articles are unavailable for many claims

4. Explainability

5. Keeping human in the loop
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