
(c) Andreas L Opdahl, 2022 INFO319: Big Data

Session 3
• Structured streaming Spark
• More about Spark

– RDDs
– more about functions
– unions and joins
– aggregations (like GroupBy)

• Introduction to Kafka
• Introduction to research methods

– design science research
– the programming projects

• Exercises 2 & 3

Structured
Streaming Spark

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Limitations of Hadoop MapReduce
• Batch-oriented, with jobs that can take day(s)
• Heavily disk based

– less suitable for iterative and interactive tasks
• Rigid, with few operations, e.g., for

– structured data schemas and optimisation (e.g., SQL)
– sharing data (broadcasts and accumulators)
– machine learning
– graph processing
– streaming (or live) data

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Structured Streaming Spark
• «Plain» Streaming Spark:

– Spark 1.x, based on RDDs
• Structured Streaming Spark:

– Spark >2.0, based on DataFrames (and DataSets, SQL, ...)
– built on the Structured Spark engine
– streaming computations on dynamic data

• expressed similarly to batch computations on static data
• running jobs incrementally
• updating results continuously as streaming data arrive

– Based on the standard Dataset/DataFrame/SQL operations
• APIs in Scala, Java, Python, R...

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Structured Streaming Spark
• Stream processing engine:

– fast, scalable, reliable and fault-tolerant
– end-to-end and exactly-once guarantees
– checkpointing, replayable sources, write-ahead logs
– without the user having to reason about streaming.

• Supports:
– streaming aggregations
– event-time windows
– stream-to-batch and stream-to-stream joins

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Processing
• Micro-batch processing:

– the default
– processes data streams as a series of small batch jobs
– end-to-end latencies as low as 100 milliseconds
– exactly-once fault-tolerance guarantee

• Continuous processing:
– since Spark 2.3
– low-latency processing mode
– end-to-end latencies as low as 1 millisecond
– at-least-once guarantees

• Uses the standard Dataset/DataFrame/SQL operations

(c) Andreas L Opdahl, 2022 INFO319: Big Data

State store
• State store:

– versioned key-value store that provides both read and write operations
– handles stateful operations across batches

• Two built-in state store providers:
– HDFS state store provider

• all the data is stored in memory map in the first stage
• then backed by files in an HDFS-compatible file system

– RocksDB state store implementation

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Streaming input
• Consider the input data stream as the input DataFrame
• Every data item that is arriving on the stream is a new row appended to the

bottom of the Input DataFrame

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Streaming output
• Streaming Spark:

– treats the input data stream as a table that grows continuously
– runs an incremental job on the unbounded input table

• expressed similarly to a job on a static input table
– treats the output data stream as a table that is repeatedly being

• appended to (append mode, the default)
• overwritten (complete mode)
• updated (update mode)

• Triggers determine how often the incremental job is run
– the default is as often as possible

(c) Andreas L Opdahl, 2022 INFO319: Big Data

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Example

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Programming model
• Transformation of the Input DataFrame generates the Output DataFrame

– every trigger interval (e.g., every 1 second):
• new rows get appended to the Input DataFrame,
• which eventually updates the Output DataFrame

– whenever the output frame changes, the results are written to a sink
– output modes:

• complete: the entire updated Output DataFrame is written to the sink
• append: only newly appended rows since the last trigger are written

– applicable when existing rows are not expected to change
• update: only outputs rows changed since the last trigger are written

– equivalent to append if no aggregations
• each mode is applicable on certain types of queries...

Processing details
• Structured Streaming does not materialize the entire table:

– reads the latest available data from the streaming data source
– processes it incrementally to update the result
– then discards the source data

• Only keeps around the minimal intermediate state data
– such as intermediate counts required to update an output grame

• High-level model, transparently takes care of:
– running aggregations
– reliability, fault-tolerance
– ensuring consistency (at-least-once, or at-most-once, or exactly-once)
– updating the Output DataFrame when there is new data

Handling event times
• Event time:

– the time embedded in the data itself
– often preferred to the time when Spark receives them
– natural representation:

• each event from the devices is a row in the table
• each event-time represented as a column value in the row

– allows window-based aggregations (e.g. number of events every minute)
as a special type of grouping and aggregation on the event-time column

• each time window is a group
• each row can belong to multiple windows/groups

– event-time-window-based aggregation queries can be defined
consistently on both a static dataset as well as on a data stream

Handling late data
• Late data:

– delayed arrival into to Spark
– «data that arrive later than expected based on its event-time»
– data about older events are appended below more recent ones

• Can be handled using update mode:
– existing aggregates in the Output DataFrame are updated with late data
– the user can specify the threshold for late data

• the engine cleans up old intermediate state automatically

Fault Tolerance Semantics
• End-to-end exactly-once fault tolerance:

– the same input row effects the Output DataFrame exactly once
– one of key goals behind the design of Spark Structured Streaming
– reliably tracking the exact progress of the processing
– can handle any kind of failure by restarting and/or reprocessing

• replayable sources
• Streaming sources assumed to have offsets (similar to Kafka offsets) to

track the read position in the stream.
– checkpointing and write-ahead logs record the offset range of the data

being processed in each trigger
– streaming sinks are designed to be idempotent for handling reprocessing

Structured Streaming
in Pyspark

Data sources in Pyspark
• Streaming DataFrames through the DataStreamReader interface:

– SparkSession.readStream()
• i.e., spark.readStream()

– specify the details in a way similar to static DataFrames
• i.e., data format, schema, options...

• Input from streams:
– streaming_df = spark.readStream.format(format).load(location)
– core streaming sources:

• socket, folder, HDFS, Kafka

Built-in streaming sources
• File source:

– reads files written in a directory as a stream of data
– files processed in the order of file modification time
– supported file formats: text, CSV, JSON, ORC, Parquet...

• Kafka source:
– reads data from Kafka

• Socket source (for testing):
– reads utf-8 text data from a socket connection
– the listening server socket is at the Spark driver
– does not guarantee end-to-end fault-tolerance

• Rate sources (for testing):
– generate data at the specified number of rows per second

Data sinks in Pyspark
• Streaming DataFrames through the DataStreamWriter interface:

– DataFrame.writeStream()
• i.e., streaming_df.writeStream()

• Output to streams:
– streaming_df.writeStream. … .start() # usual streaming action

streaming_df.awaitTermination()
– core streaming sinks:

• socket, console, memory, foreach(Batch), folder, HDFS, Kafka

Data sinks in Pyspark
• Streaming DataFrames through the DataStreamWriter interface:

– specify the details in a way similar to static DataFrames
• i.e., data format, options...

– also streaming specific:
• outputMode: what gets written to the output sink.
• queryName (optional): specify a unique query name
• trigger interval (optional): default is as fast as possible
• checkpoint location: where to write checkpoint information

– other methods:
• foreach: custom write logic on every output row
• foreachBatch: custom write logic on the output of each micro-batch

Built-in streaming sinks
• File sink; stores the output to a directory.
• Kafka sink: stores the output to one or more topics in Kafka.
• Foreach(Batch) sink: runs arbitrary computation on the records in the output
• Console sink (for debugging):

– prints the output to the console/stdout every time there is a trigger
– both append and complete modes are supported
– only low data volumes as the entire output is collected and stored in the

driver’s memory after every trigger.
• Memory sink (for debugging):

– output is stored in memory as an in-memory table
– modes and data volumes as for console sink

StreamingQuery
• Lazy evaluation of streaming transformations
• Usual streaming action: DataStreamWriter.start()

– returns a StreamingQuery object
– executes continuously in the background as new data arrives
– call awaitTermination() on the StreamingQuery object

• Important methods:
– awaitTermination([timeout])

• waits for the termination of this query by query.stop() or an exception
– exception() - halts the streaming query and throws exception
– explain([extended]) - prints the execution plans to the console
– stop() - stops the streaming query

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

