Session 3

- Structured streaming Spark
- More about Spark
 - RDDs
 - more about functions
 - unions and joins
 - aggregations (like GroupB)
- Introduction to Kafka
- Introduction to research methods
 - design science research
 - the programming projects
- Exercises 2 & 3

(c) Andreas L Opdahl, 2022

Structured Streaming Spark

Limitations of Hadoop MapReduce

- *Batch*-oriented, with jobs that can take day(s)
- Heavily *disk* based
 - less suitable for *iterative* and *interactive* tasks
- *Rigid*, with few operations, e.g., for
 - structured data schemas and optimisation (e.g., SQL)
 - sharing data (broadcasts and accumulators)
 - machine learning
 - graph processing
 - streaming (or live) data

INFO319: Big Data

Structured Streaming Spark

- «Plain» Streaming Spark:
 - Spark 1.x, based on RDDs
- Structured Streaming Spark:
 - Spark >2.0, based on DataFrames (and DataSets, SQL, ...)
 - built on the Structured Spark engine
 - streaming computations on dynamic data
 - · expressed similarly to batch computations on static data
 - running jobs incrementally
 - updating results continuously as streaming data arrive
 - Based on the standard Dataset/DataFrame/SQL operations
 - APIs in Scala, Java, Python, R...

INFO319: Big Data

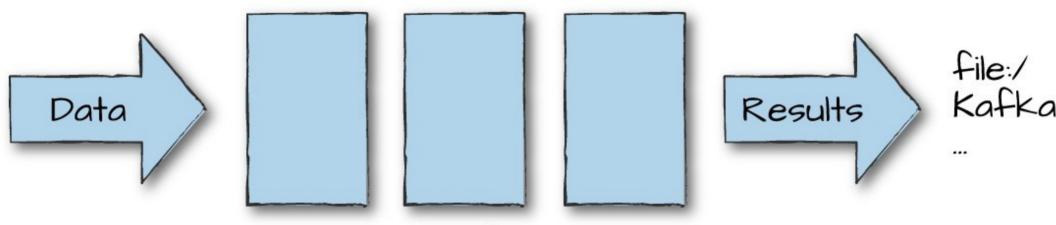
Structured Streaming Spark

- Stream processing engine:
 - fast, scalable, reliable and fault-tolerant
 - end-to-end and exactly-once guarantees
 - checkpointing, replayable sources, write-ahead logs
 - without the user having to reason about streaming.
- Supports:
 - streaming aggregations
 - event-time windows
 - stream-to-batch and stream-to-stream joins

Processing

- Micro-batch processing:
 - the default
 - processes data streams as a series of small batch jobs
 - end-to-end latencies as low as 100 milliseconds
 - exactly-once fault-tolerance guarantee
- Continuous processing:
 - since Spark 2.3
 - low-latency processing mode
 - end-to-end latencies as low as 1 millisecond
 - at-least-once guarantees
- Uses the standard Dataset/DataFrame/SQL operations

INFO319: Big Data



Microbatches of DataFrames

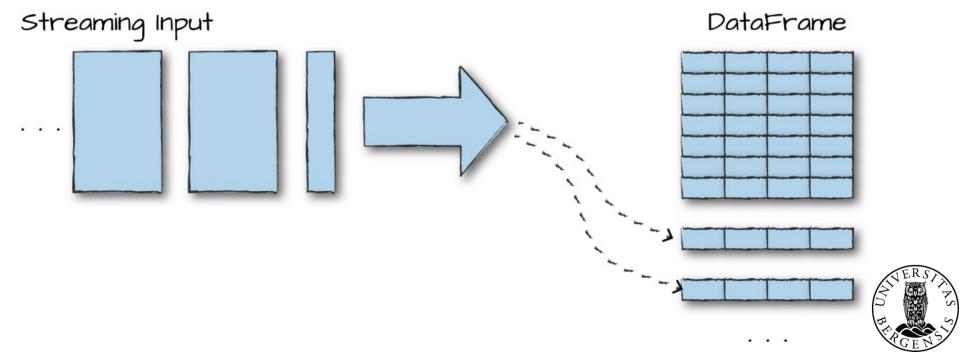
(c) Andreas L Opdahl, 2022

State store

- State store:
 - versioned key-value store that provides both read and write operations
 - handles stateful operations across batches
- Two built-in state store providers:
 - HDFS state store provider
 - all the data is stored in memory map in the first stage
 - then backed by files in an HDFS-compatible file system
 - RocksDB state store implementation

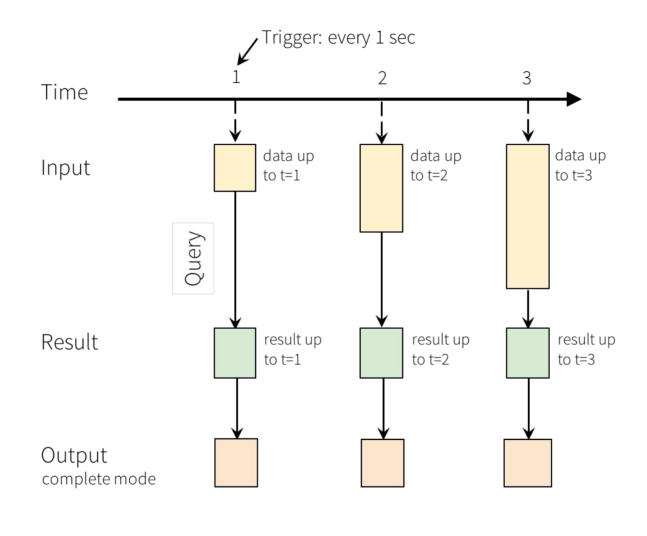
Streaming input

- Consider the input data stream as the input DataFrame
- Every data item that is arriving on the stream is a new row appended to the bottom of the Input DataFrame



Streaming output

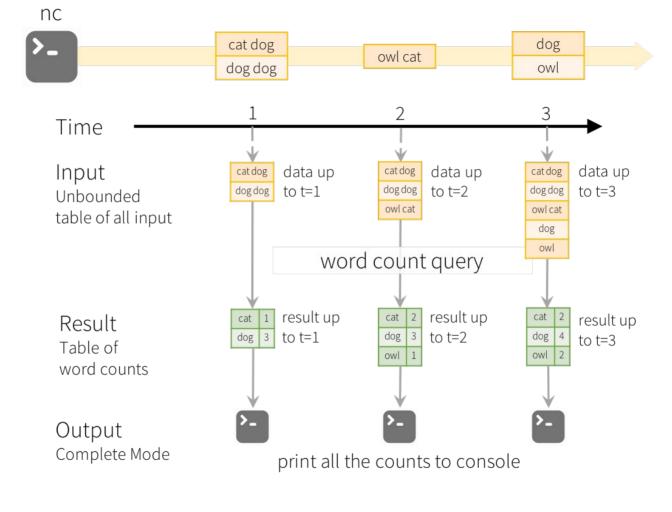
- Streaming Spark:
 - treats the input data stream as a table that grows continuously
 - runs an incremental job on the unbounded input table
 - expressed similarly to a job on a static input table
 - treats the output data stream as a table that is repeatedly being
 - appended to (append mode, the default)
 - overwritten (complete mode)
 - updated (update mode)
- Triggers determine how often the incremental job is run
 - the default is as often as possible



Programming Model for Structured Streaming

(c) Andreas L Opdahl, 2022

Example



Model of the Quick Example

(c) Andreas L Opdahl, 2022

Programming model

- Transformation of the Input DataFrame generates the Output DataFrame
 - every trigger interval (e.g., every 1 second):
 - new rows get appended to the Input DataFrame,
 - which eventually updates the Output DataFrame
 - whenever the output frame changes, the results are written to a sink
 - output modes:
 - complete: the entire updated Output DataFrame is written to the sink
 - append: only newly appended rows since the last trigger are written
 - applicable when existing rows are not expected to change
 - update: only outputs rows changed since the last trigger are written
 - equivalent to append if no aggregations
 - each mode is applicable on certain types of queries...

INFO319: Big Data

Processing details

- Structured Streaming does not materialize the entire table:
 - reads the latest available data from the streaming data source
 - processes it incrementally to update the result
 - then discards the source data
- Only keeps around the minimal intermediate state data
 - such as intermediate counts required to update an output grame
- High-level model, transparently takes care of:
 - running aggregations
 - reliability, fault-tolerance
 - ensuring consistency (at-least-once, or at-most-once, or exactly-once)
 - updating the Output DataFrame when there is new data

Handling event times

- Event time:
 - the time embedded in the data itself
 - often preferred to the time when Spark receives them
 - natural representation:
 - each event from the devices is a row in the table
 - each event-time represented as a column value in the row
 - allows window-based aggregations (e.g. number of events every minute) as a special type of grouping and aggregation on the event-time column
 - each time window is a group
 - each row can belong to multiple windows/groups
 - event-time-window-based aggregation queries can be defined consistently on both a static dataset as well as on a data stream

Handling late data

- Late data:
 - delayed arrival into to Spark
 - «data that arrive later than expected based on its event-time»
 - data about older events are appended below more recent ones
- Can be handled using update mode:
 - existing aggregates in the Output DataFrame are updated with late data
 - the user can specify the threshold for late data
 - the engine cleans up old intermediate state automatically

Fault Tolerance Semantics

- End-to-end exactly-once fault tolerance:
 - the same input row effects the Output DataFrame exactly once
 - one of key goals behind the design of Spark Structured Streaming
 - reliably tracking the exact progress of the processing
 - can handle any kind of failure by restarting and/or reprocessing
 - replayable sources
- Streaming sources assumed to have offsets (similar to Kafka offsets) to track the read position in the stream.
 - checkpointing and write-ahead logs record the offset range of the data being processed in each trigger
 - streaming sinks are designed to be idempotent for handling reprocessing

Structured Streaming in Pyspark

Data sources in Pyspark

- Streaming DataFrames through the DataStreamReader interface:
 - SparkSession.readStream()
 - i.e., spark.readStream()
 - specify the details in a way similar to static DataFrames
 - i.e., data format, schema, options...
- Input from streams:
 - streaming_df = spark.readStream.format(format).load(location)
 - core streaming sources:
 - socket, folder, HDFS, Kafka

Built-in streaming sources

- File source:
 - reads files written in a directory as a stream of data
 - files processed in the order of file modification time
 - supported file formats: text, CSV, JSON, ORC, Parquet...
- Kafka source:
 - reads data from Kafka
- Socket source (for testing):
 - reads utf-8 text data from a socket connection
 - the listening server socket is at the Spark driver
 - does not guarantee end-to-end fault-tolerance
- Rate sources (for testing):
 - generate data at the specified number of rows per second

Data sinks in Pyspark

- Streaming DataFrames through the DataStreamWriter interface:
 - DataFrame.writeStream()
 - i.e., streaming_df.writeStream()
- Output to streams:
 - streaming_df.writeStream.start() # usual streaming action
 streaming_df.awaitTermination()
 - core streaming sinks:
 - socket, console, memory, foreach(Batch), folder, HDFS, Kafka

Data sinks in Pyspark

- Streaming DataFrames through the DataStreamWriter interface:
 - specify the details in a way similar to static DataFrames
 - i.e., data format, options...
 - also streaming specific:
 - outputMode: what gets written to the output sink.
 - queryName (optional): specify a unique query name
 - trigger interval (optional): default is as fast as possible
 - checkpoint location: where to write checkpoint information
 - other methods:
 - foreach: custom write logic on every output row
 - foreachBatch: custom write logic on the output of each micro-batch

Built-in streaming sinks

- File sink; stores the output to a directory.
- Kafka sink: stores the output to one or more topics in Kafka.
- Foreach(Batch) sink: runs arbitrary computation on the records in the output
- Console sink (for debugging):
 - prints the output to the console/stdout every time there is a trigger
 - both append and complete modes are supported
 - only low data volumes as the entire output is collected and stored in the driver's memory after every trigger.
- Memory sink (for debugging):
 - output is stored in memory as an in-memory table
 - modes and data volumes as for console sink

StreamingQuery

- Lazy evaluation of streaming transformations
- Usual streaming action: DataStreamWriter.start()
 - returns a StreamingQuery object
 - executes continuously in the background as new data arrives
 - call awaitTermination() on the StreamingQuery object
- Important methods:
 - awaitTermination([timeout])
 - waits for the termination of this query by query.stop() or an exception
 - exception() halts the streaming query and throws exception
 - explain([extended]) prints the execution plans to the console
 - stop() stops the streaming query