
Information Systems Frontiers (2018) 20:993–1011
https://doi.org/10.1007/s10796-018-9833-z

CrisMap: a Big Data Crisis Mapping System Based on Damage
Detection and Geoparsing

Marco Avvenuti1 · Stefano Cresci2 · Fabio Del Vigna2 · Tiziano Fagni2 ·Maurizio Tesconi2

Published online: 22 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Natural disasters, as well as human-made disasters, can have a deep impact on wide geographic areas, and emergency
responders can benefit from the early estimation of emergency consequences. This work presents CrisMap, a Big Data
crisis mapping system capable of quickly collecting and analyzing social media data. CrisMap extracts potential crisis-
related actionable information from tweets by adopting a classification technique based on word embeddings and by
exploiting a combination of readily-available semantic annotators to geoparse tweets. The enriched tweets are then visualized
in customizable, Web-based dashboards, also leveraging ad-hoc quantitative visualizations like choropleth maps. The maps
produced by our system help to estimate the impact of the emergency in its early phases, to identify areas that have been
severely struck, and to acquire a greater situational awareness. We extensively benchmark the performance of our system on
two Italian natural disasters by validating our maps against authoritative data. Finally, we perform a qualitative case-study
on a recent devastating earthquake occurred in Central Italy.

Keywords Crisis mapping · Word embeddings · Geoparsing · Online social networks · Social media · Big data

1 Introduction

Computational solutions capable of overcoming societal
sustainability challenges have always been looked at with
great interest from both Academia and practitioners (Wang
and Kant 2014). In recent years, one of the fields that has
attracted more attention is the one related to the exploita-
tion of user-generated information for disaster manage-
ment (Avvenuti et al. 2016a). Within this context, Social
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Media (SM) data revealed to be particularly valuable in
the aftermath of those events, typically natural and human-
made disasters, which trigger massive participation of
affected communities in sharing time-sensitive and action-
able information (Gao et al. 2011; Avvenuti et al. 2016c).
Both types of disasters require a timely intervention by
emergency responders, who are in charge of providing
support and relief to the affected population. In many prac-
tical situations, the scarcity of key resources – temporal,
economic, and human resources above all – imposes dire
limitations to the extent and the effectiveness of the emer-
gency management process. For this reason, tools capable
of supporting resource allocation and prioritization can have
a significant impact towards the effectiveness of emergency
management operations. Among these tools, there are the
SM-based crisis mapping systems, which increase situa-
tional awareness by enabling the real-time gathering and
visualization of data contributed by many SM users. Such
type of system is a platform able to collect text and mul-
timedia content from a variety of sources, such as Twitter
and Facebook, to analyze and aggregate collected data, and
to visualize relevant facts on a map. Notably, during many
recent disasters, civil protection agencies developed and
maintained live Web-based crisis maps to help visualize
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and track stricken locations, assess damage, and coordinate
rescue efforts (Middleton et al. 2014).

Indeed, recent work demonstrated the possibility to
create crisis maps solely using geolocated data from SM, to
understand better and monitor the unfolding consequences
of disasters (Goolsby 2010; Middleton et al. 2014; Avvenuti
et al. 2016b). All these SM-based crisis mapping systems
face the fundamental challenge of geoparsing the textual
content of emergency reports to extract mentions of
places/locations, thus increasing the number of messages
to exploit. Geoparsing involves binding a textual document
to a likely geographic location which is mentioned in the
document itself. State-of-the-art systems, such as Middleton
et al. (2014), perform the geoparsing task by resorting to
a number of preloaded geographic resources containing
all the possible matches between a set of place names
(toponyms) and their geographic coordinates. This approach
requires an offline phase where the system is specifically
set to work in a geographically-limited region. Indeed, it
would be practically infeasible to load associations between
toponyms and coordinates for a vast area or a whole
country. Moreover, not all geolocated data is useful towards
understanding the severity of the emergency and, indeed,
only a small fraction of messages convey information about
the consequences of the emergency on communities and
infrastructures. Current crisis mapping systems typically
detect the most stricken areas by considering the number
of messages shared and by following the assumption that
more emergency reports equal to more damage (Weber
and Garimella 2014; Middleton et al. 2014). Although this
relation exists when considering densely and uniformly
populated areas (Liang et al. 2013), it becomes gradually
weaker when considering broader regions or rural areas.
These challenges, related to the detection of damage and
geoparsing, are reflected by the current limitations of state-
of-the-art SM-based crisis mapping systems (Avvenuti et al.
2016b).

Here, we propose solutions to overcome the main draw-
backs of current state-of-the-art crisis mapping systems.
Our proposed system exploits both situational assessments
and position information contained in textual data pro-
duced during an emergency. One interesting novelty of our
approach is the analysis of emergency-related tweets from
a twofold perspective: (i) a damage detection component
exploits word embeddings and a SVM classifier to detect
messages reporting damage to infrastructures or injuries to
the population; (ii) a message geolocation component per-
forms the geoparsing task by exploiting online semantic
annotation tools and collaborative knowledge-bases such
as Wikipedia and DBpedia. Information extracted by the
damage detection and the message geolocation compo-
nents are combined to produce interactive, Web-based crisis
maps.

Contributions We describe CrisMap: a system capable of
producing crisis maps in the aftermath of mass emergencies
by simultaneously adopting word embeddings for tweet
filtering and classification, and by exploiting semantic
annotators for tweet geoparsing. In particular:

– we propose an architectural solution for crisis mapping,
based on scalable and resilient Big Data technologies;

– we address the problem of damage detection in SM
messages;

– we compare a damage detection approach based
on natural language processing (NLP) versus one
based on word embeddings (WE), highlighting the
advantages of WE towards language independence and
fast processing;

– we propose and benchmark a geoparsing technique
based on readily-available semantic annotators;

– we validate the reliability of the crisis maps generated
by our system against authoritative data for two past
emergencies;

– we perform a qualitative case-study on a recent severe
earthquake in Italy.

The deployment of our proposed CrisMap system can
help to quickly map damage scenarios to concentrate rescue
efforts and organize a prompt emergency response.

2 RelatedWorks

The possibility to exploit social media data for crisis
mapping has been first envisioned in a few trailblazing
works (Goolsby 2010; Gao et al. 2011; Meier 2012) and
further backed up by recent research (Avvenuti et al. 2016c).
Since the early works, there has been a growing interest by
both practitioners and scholars in all areas related to crisis
mapping: from data acquisition and management to analysis
and visualization (Avvenuti et al. 2016b).

2.1 Practical Experiences

The great interest of practitioners and emergency responders
towards the exploitation of SM data is testified by the efforts
of the Federal Emergency Management Agency (FEMA)
and the United States Geological Survey (USGS), which
already led to interesting results with practical applications
to earthquake emergency management1 (Burks et al. 2014;
Earle et al. 2012). Regarding already deployed applica-
tions, well-known crisis mapping platforms are Ushahidi,2

1https://blog.twitter.com/2014/using-twitter-to-measure-earthquake-impact-
in-almost-real-time.
2https://www.ushahidi.com/.
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Mapbox,3 Google’s Crisis Map,4 ESRI ArcGIS,5 and Cri-
sisCommons6 (Bauduy 2010). The main features of these
platforms are related to data acquisition, data fusion, and
data visualization. Such platforms represent hybrid crowd-
sensing systems where users can voluntarily load data onto
the system in a participatory way, or the system can be
configured to automatically perform data acquisition oppor-
tunistically. The same hybrid data collection strategy has
also been employed in a fully automatic system recently
benchmarked in the earthquake emergency management
field (Avvenuti et al. 2017). Another already-deployed
application that exploits crowdsourced data is USGS’s “Did
You Feel It?” (DYFI) system.7 This system, although not
relying on SM data, exploits citizen reports and responses to
earthquakes to automatically assess potential damage. It is
foreseeable that in the near future such system could instead
be fed with SM data. Indeed, there is already interesting
research – from both USGS itself and other laboratories –
moving towards this direction (Guy et al. 2014; Cresci et al.
2017; Kryvasheyeu et al. 2016, 2017).

2.2 Academic Works

Recent scientific literature has instead switched the
focus from data acquisition and data fusion to in-
depth data analysis. This is typically done by leveraging
powerful machine learning techniques and resulted in
novel solutions being proposed to overcome critical crisis
mapping challenges such as geoparsing and extracting
situational awareness from microtexts (Cresci et al. 2015a).

Specifically, Middleton et al. (2014) presents a state-of-
the-art system that matches preloaded location data for areas
at risk to geoparse real-time tweet data streams. The system
has been tested with data collected in the aftermath of
New York’s flooding (US – 2012) and Oklahoma’s tornado
(US – 2013) and achieved promising results. Among the
key features of Middleton et al. (2014) is the possibility
to match toponyms at region-, street-, or place-level. This
step is achieved by preloading already existing geographic
databases (e.g., the Geonames and GEOnet Names global
gazetteers) for areas at risk, into the system. Crisis maps
are then generated by comparing the volume of tweets
that mention specific locations with a statistical baseline.
Although presenting state-of-the-art solutions, Middleton
et al. (2014) still has several drawbacks. The system can
only work on a specific geographical area at a time since
it has to load and manage external data for that area.

3https://www.mapbox.com/.
4https://www.google.org/crisismap/.
5http://www.esri.com/arcgis/.
6https://crisiscommons.org/.
7http://earthquake.usgs.gov/research/dyfi/.

Tweets mentioning locations outside the predefined area
cannot be geolocated and consequently disasters cannot
be monitored outside the area’s boundaries. Moreover,
the width of the area covered by the system has direct
implications on the amount of data to load and manage.
This impacts on system’s performances thus resulting in
limitations on the maximum geographical area that can
be monitored with Middleton et al. (2014). Furthermore,
the system in Middleton et al. (2014) does not take into
account the problem of toponymic polysemy (Cresci et al.
2015a; Avvenuti et al. 2016b). In addition, crisis maps
generated by Middleton et al. (2014) only consider tweet
volumes and may result less accurate than those obtained
by analyzing the content of tweets. For example in the case
of severe earthquakes, where the shaking is also perceived
hundreds of kilometers far from the epicenter, the majority
of tweets comes from densely populated areas, such as big
cities. Regardless, locations that have suffered most of the
damage might be small villages in rural areas around the
epicenter, which risk remaining unnoticed if the analysis
only considers tweet volumes (Cresci et al. 2015a; Avvenuti
et al. 2016b).

In addition to the fully functional crisis mapping system
described above, other solutions for the geoparsing task
have been recently proposed in Gelernter and Mushegian
(2011), Gelernter and Balaji (2013), and de Oliveira et al.
(2015) where authors experimented with heuristics, open-
source named entity recognition software, and machine
learning techniques. Furthermore, other works emphasized
the extraction of actionable and time-sensitive information
from messages. For instance, authors of Verma et al. (2011)
apply natural language processing techniques to detect
messages carrying relevant information for situational
awareness during emergencies. In Imran et al. (2013) is
described a technique to extract “information nuggets” from
tweets – that is, self-contained information items relevant to
disaster response. While these works present fully automatic
means to extract knowledge from texts, in Vieweg and
Hodges (2014) is proposed a hybrid approach exploiting
both human and machine computation to classify messages.
All these linguistic analysis techniques for the extraction
of relevant information from disaster-related messages have
however never been employed in a crisis mapping system.

Although these works are limited in scope to analyses of
textual data, other efforts were recently devoted to the exploita-
tion of multimedia content for emergency response. Aerial
photographs and imagery have been widely adopted in
monitoring tasks of areas involved in emergencies. This
operation can be performed using vehicles, drones, and
satellites (Lewis 2007) and when such content is cou-
pled with geographic and temporal information, it provides
actionable information (Dashti et al. 2014). Also images
coming from SM can be exploited to train classifiers to
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recognize potential critical situations and get more knowl-
edge about emergencies, as shown in Liang et al. (2013)
and Lagerstrom et al. (2016). However, messages related
to emergencies could potentially contain false information
and rumors, which may alter analyses (Cheong and Cheong
2011). Similarly to textual data, also multimedia data can be
faked, and such content can spread rapidly through Twitter
(Gupta et al. 2013a). Fortunately, fake multimedia content
is represents a minority of all multimedia content published
in the aftermath of emergencies, and machine learning algo-
rithms have been shown to be capable of characterizing
bogus messages (Dewan et al. 2017) in order to filter them
out (Gupta et al. 2013b).

To conclude, we highlight that a recent survey presented
an extensive review of current literature in the broad field
of SM emergency management and can be considered for
additional references (Imran et al. 2015).

3 System Architecture

The software architecture of our crisis mapping system is
presented in Fig. 1.

As with any system that needs to cope with the massive
amount of data collected from social networks, special
requirements are imposed in the design by both the real-
time constraints and the heterogeneity of data. For these
reasons, our CrisMap system deploys several Big Data
technologies to process incoming SM data efficiently,
without sacrificing scalability and fault-tolerance.

The functional workflow is divided into three logical
steps: (i) Data Ingestion and Enrichment (labelled with a
blue circle), where SM data is collected and processed
in order to select and geoparse messages containing
information about damages; (ii) Data Indexing (labelled
with a red circle), in which useful data is conditioned
and saved into the internal storage; (iii) Data Visualization
(labelled with a green circle), in which stored data is
retrieved and used to create maps or, more generally, to
provide results to the end users through a Web dashboard.

In the following, we give an overall description of the
functionalities of each of these steps. A detailed technical
description and evaluation of the solutions we adopted and
implemented to address the main issues related to the design
of a crisis mapping system, namely mining messages to
search for damage, geoparsing and visualize data, are given
in Sections 5, 6 and 7, respectively.

3.1 Data Ingestion and Enrichment

The first logical step of the system consists into ingesting
data coming fromavailable SMdata sources, possibly enriching
it with additional information not directly available from the

data source and which can provide useful information
exploitable subsequently during the visualization phase.
Data ingestion occurs using platform-specific crawl-
ing/scraping software. For the sake of simplicity, in this
work we focused our attention on Twitter solely. However,
nothing prevents the adopter to deploy the system using a
different data source.

Our system is able to process both real-time data fetched
from the Twitter stream and historical data acquired from
data resellers. In a practical application scenario, the system
is fed with real-time data, while historical data can be used
to run simulations on past emergency events. The Crawler
component exploits Twitter’s Streaming API8 to perform
data acquisition from the social network. The Streaming
API gives low latency access to Twitter’s global stream
of messages. Collected messages can be optionally filtered
using search keywords.

Collected messages are then forwarded to the Processing
layer through a specific queue (named “Processing”)
placed at the Broker layer. Our implementation choice
fell on Kafka,9 a distributed publish-subscribe messaging
platform. As described on the website, Kafka “is used for
building real-time data pipelines and streaming apps. It is
horizontally scalable, fault-tolerant, wicked fast, and runs in
production in thousands of companies”. Its characteristics
help the system to sustain very high traffic rates by
mitigating the back-pressure data problem (Tassiulas and
Ephremides 1992) and to process data resiliently, with no
loss in case of system failures (e.g., hardware faults).

SM messages are fetched from the Processing queue
and processed by an enrichment component called DataEn-
richer. As depicted in the figure, the DataEnricher is orga-
nized internally into a pipeline of three sub-modules that
process, filter, and enrich incoming data. The ContentFil-
tering sub-module analyzes the tweets to select those that
are relevant to the problem (e.g., whose contents relate to
natural disasters). Relevant tweets are then analyzed by the
DamageDetector sub-module, which in turn discriminates
between data carrying or not carrying damage informa-
tion. The tweets containing damage information are finally
forwarded to the GeoParsing sub-module, which possibly
enriches each tweet with information about the discovered
geolocation. Upon completion of the pipeline, the enriched
SM messages are pushed into another queue, the Indexing
queue, waiting to be indexed and stored into the system.
The DataEnricher is implemented using Spark10 and uses
a streaming approach to process incoming data from the
Processing queue quickly.

8https://developer.twitter.com/en/docs/tweets/filter-realtime/
overview.
9https://kafka.apache.org.
10http://spark.apache.org.
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Fig. 1 The logical architecture of our crisis mapping system. On the
left-hand side, the architecture is organized in a stack of layers: from
the topmost data source and application layers of our system, to the

broker, processing, and data layers. On the right-hand side, for each
layer are reported the technologies adopted to design and implement
the components of the system

3.2 Data Indexing

In the second step, enriched data is moved from the
DataEnricher to a permanent storage through the Indexing
queue. Data fetched from the queue is instantaneously
parsed and pushed into a search and analytics engine. The
choice of Elasticsearch11 (ES) was driven by its capability
to scale horizontally, as well as to perform fast search and
aggregation on textual data leveraging its internal Apache
Lucene12 engine. In fact, the integration of ES with other
software like Kibana and Logstash makes it a valid solution
for the storage system.

11https://www.elastic.co/products/elasticsearch.
12https://lucene.apache.org/.

The role of the Indexer module is to map the data
structure of a Twitter message into an optimized ES index.
Each field type is treated differently to exploit the features
of the engine to provide fast search and real-time analytics
on stored data (e.g., ES tokenizes textual fields and provides
an inverted terms list to search for in the related fields
efficiently).

3.3 Data Visualization

In the third step, data stored in the index can be browsed and
queried through the Kibana13 software. Kibana is an open
source visualization tool, part of the ELK stack14 provided

13https://www.elastic.co/products/kibana.
14https://www.elastic.co/products.
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by Elasticsearch company. Kibana software provided a
Web GUI to access Elasticsearch data without manually
writing queries. With Kibana, it is possible to build real-time
visualizations with handy insights, like real-time volumes,
maps, bar charts and word clouds. Those visualizations can
also be joined to build complex dashboards that allow the
user to track changes over time for the most important
metrics of the dataset. Moreover, Kibana supports the
possibility to easily extend the internal visualization types
to customize graphical views using the most appropriate
visual analytics for data. For our purposes, we developed
a plugin to replace the native visualization maps. The new
plugin.15 supports multi-resolution choropleth maps and
the possibility of normalizing data according to population,
offering different options for what concerns the scales and
their customization.

3.4 Real-time and Scalability Features

Considering the practical purpose of our system, we
designed and developed CrisMap with performance in
mind, keeping the architecture flexible and capable of
scaling up horizontally. To maximize our throughput,
we optimized all system’s components, starting from the
Crawler that is our data entry point. Specifically, the
Crawler does not impose any limitation on the number of
tweets delivered per unit of time. In fact, the only limitation
is represented by rate limits of the Streaming API, which are
estimated to be around 60 tweets per second (i.e., 1% of total
Twitter traffic). In our experience with Italian emergencies,
we just witnessed to peaks of a few hundreds of tweets per
minute, which is far below the threshold.

In the sub-modules ContentFiltering and DamageDetec-
tor, the solution adopted, based on Embeddings representa-
tion,16 has a tangible positive effect on system performance.
Indeed, the classification time of a single tweet, consider-
ing both encoding time of tweet’s text into a vector and
its prediction, is on average 0.12 milliseconds, guaranteeing
the remarkable throughput of more than 8,000 tweets per
second.

With regards to the GeoParsing sub-module, the time
taken to extract geographic information from a tweet
depends on the actual implementation – that is, on the
specific semantic annotator leveraged to geoparse the tweet.
For the sake of experimentation, we benchmarked several
well-known semantic annotators to assess their throughput.

The fastest annotator, TagMe, specifically designed to
operate in a streaming fashion thus performing on-the-
fly annotations (Ferragina and Scaiella 2010), is able to

15The plugin is publicly available at https://github.com/marghe943/
kibanaChoroplethMap.git.
16See Section 5 for more details about the proposed approach.

geoparse around 9 tweets per second. It is also worth noting
that our prototypical implementation of the CrisMap
system performs the geoparsing operation by querying the
RESTful Web APIs of the semantic annotators. However,
many semantic annotators are open source and can be
installed and configured to run locally (e.g., Dexter17

and DBpedia Spotlight18). Thus, in a production
environment it would be possible – and highly advisable
– to avoid Web API queries in favor of much faster local
computations.

Next in the pipeline, Elasticsearch (ES) provides
high-performance indexing operations. In fact, according to
the official documentation, it is capable of indexing around
2,000 tweets per second.19

Given these considerations regarding the throughput, the
bottleneck is represented by the GeoParsing sub-module.
However, these results are related to a system deployed with
the lowest possible degree of parallelization. In fact, since
CrisMap is based on scalable Big Data technologies, it is
possible to replicate system components (e.g., GeoParsing)
over a cluster of machines in order to achieve overall better
performances.

Regarding the latency, we extensively tested the Crawler
performance in collecting a real-time stream of ∼30,000
tweets. Results showed an average latency of about 0.17
seconds. The amount of time taken by the ContentFiltering
and DamageDetector sub-modules to classify a single tweet
is in the order of milliseconds, thus representing a negligible
delay. TagMe instead introduces a delay of 0.12 seconds per
tweet, on average. Finally, Elasticsearch takes ∼1 second
to index a document and to make it available for search
and visualization purposes.20 Thus, the total delay of the
CrisMap analysis pipeline is about 1.3 seconds, which
perfectly fits our need to produce real-time crisis maps.

Finally, some of the APIs exploited by CrisMap
impose usage limits on the number of calls. The main
limitation is related to the APIs needed for the geoparsing
operation. Such limitation depends on the specific semantic
annotator used for geoparsing. TagMe, hosted within the
distributed and highly scalable SoBigData European
research infrastructure,21 does not impose any limitation
on the number of API calls, which in turn, opens up the
possibility to perform large-scale and parallel analyses.
In addition, local installations of semantic annotators also
avoid limitations in the number of API calls.

17https://github.com/dexter/dexter.
18https://github.com/dbpedia-spotlight/model-quickstarter.
19https://www.elastic.co/blog/elasticsearch-performance-indexing-2-0.
20https://www.elastic.co/guide/en/elasticsearch/reference/6.0/
tune-for-indexing-speed.html.
21http://www.sobigdata.eu/.
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4 Datasets

The datasets used for this work are composed of tweets
in the Italian language, collected in the aftermath of 5
major natural disasters. For our experiments, we considered
different kinds of disasters, both recent and historical: 3
earthquakes, a flood, and a power outage. Specifically, the
L’Aquila and the Emilia datasets are related to severe
earthquakes that struck rural areas of Italy in 200922 and
2012 respectively.23 The Amatrice dataset is related to a
recent earthquake that struck central Italy in 2016.24 The
Sardinia dataset has been collected in the aftermath of
a flash flood occurred in the Sardinia island in 2013.25

Finally, the Milan dataset describes a power outage
occurred in the metropolitan city of Milan (northern Italy)
in 2013. To investigate a wide range of situations, we picked
disasters having variable degrees of severity: some caused
only moderate damage, while other produced widespread
damage and casualties.

The datasets were created by using the Twitter’s
Streaming API26 for recent disasters, and the Twitter
resellers’ Historical APIs27 (GNIP) for past disasters. The
APIs give access to a global set of tweets, optionally filtered
by search keywords. We exploited a different set of search
keywords for every different disaster to collect the most
relevant tweets about it. Whenever possible, we resorted to
hashtags specifically created to share reports of a particular
disaster, such as the #allertameteoSAR hashtag for the
Sardinia dataset. In this way, we were able to select
only tweets related to that disaster. However, for historical
disasters, we could not rely on specific hashtags and had
to exploit generic search keywords already proposed in
literature, see Sakaki et al. (2013) and Avvenuti et al.
(2014a, b). This is the case of the L’Aquila dataset,
for which we exploited the “terremoto” (earthquake) and
“scossa” (tremor) Italian keywords. Also, we only used
“fresh” data shared in the aftermath of the disasters under
investigation. For instance, all the 3,170 tweets in the
Emilia dataset were posted in less than 24 hours since the
earthquake occurred.

Tweets in the L’Aquila, Emilia, and Sardinia
datasets have been manually annotated for mentions
of damage according to the 3 following classes: (i)
tweets related to the disaster and carrying information
about damage to infrastructures/communities (damage); (ii)

22https://en.wikipedia.org/wiki/2009 L’Aquila earthquake.
23https://en.wikipedia.org/wiki/2012 Northern Italy earthquakes.
24https://en.wikipedia.org/wiki/August 2016 Central Italy
earthquake.
25https://en.wikipedia.org/wiki/2013 Sardinia floods.
26https://dev.twitter.com/docs/api/streaming.
27http://gnip.com/sources/twitter/historical.

tweets related to the disaster but not carrying relevant
information for the assessment of damage (no damage);
(iii) tweets not related to the disaster (not relevant). The
inclusion of a class for tweets that are not related to a
disaster (not relevant) is necessary because the automatic
data collection strategy we adopted does not guarantee that
all the tweets collected are related to the disaster under
investigation. This aspect is especially true for the datasets
collected with generic search keywords and represents a
further challenge for our classification task. The manual
annotation of damage mentions among tweets is exploited
to train and validate our damage detection classifier, as
thoroughly explained in Section 5. Furthermore, following
the same approach adopted in Middleton et al. (2014)
and Gelernter and Balaji (2013), we carried out an
additional manual annotation of 1,900 random tweets of
the aforementioned datasets with regards to mentions of
places/locations. This further annotation is exploited to
validate our geoparsing results, as described in Section 6.
The Milan dataset is also used for a comparison of
geoparsing techniques in Section 6, since it was already
exploited in previous work (Middleton et al. 2014).
The Emilia and Sardinia datasets are also used
in Section 7 to quantitatively validate our crisis maps
against authoritative data. Finally, the Amatrice dataset is
exploited in Section 7 as a case study of our system in the
aftermath of the recent central Italy earthquake.

Notably, the total number of 15,825 tweets in our
datasets, shown in Table 1 along with other details, is greater
than those used in other related works, such as Middleton
et al. (2014) (6,392 tweets across 4 datasets), and Gelernter
and Mushegian (2011) (2,000 tweets for a single dataset).

To better understand the importance of geoparsing in a
crisis mapping task, in Table 1 we also reported the number
of tweets natively geolocated (GPS column). Geolocation
of these tweets is performed directly by Twitter whenever
a user enables GPS or WiFi geolocation. Statistics on our
datasets confirm previous findings reporting that only a
small percentage (1% ÷ 4%) of all tweets are natively
geolocated (Cheng et al. 2010, 2015a). As introduced in
Section 1, the low number of natively geolocated tweets
drastically impairs crisis mapping, hence the need for a
geoparsing operation. Noticeably, none of the 1,062 tweets
of the L’Aquila dataset, dating back to 2009, are natively
geolocated.

5Mining Text to Search for Damage

The detection of damage in SM messages is a challenging
task due to the almost completely unstructured nature of the
data to be analyzed (Cresci et al. 2015b). The DataEnricher
component of Fig. 1 analyzes the content of tweets with

https://en.wikipedia.org/wiki/2009_L'Aquila_earthquake
https://en.wikipedia.org/wiki/2012_Northern_Italy_earthquakes
https://en.wikipedia.org/wiki/August_2016_Central_Italy_earthquake
https://en.wikipedia.org/wiki/2013_Sardinia_floods
https://dev.twitter.com/docs/api/streaming
http://gnip.com/sources/twitter/historical
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Table 1 Characteristics of the Datasets

Tweets Used in

Dataset Type Year Users Damage No damage Not relevant GPS Total Sections

L’Aquila Earthquake 2009 563 312 (29.4%) 480 (45.2%) 270 (25.4%) 0 (0%) 1,062 5, 6, 7

Emilia Earthquake 2012 2,761 507 (16.0%) 2,141 (67.5%) 522 (16.5%) 205 (6.5%) 3,170 5, 6

Milan Power outage 2013 163 – – – 15 (3.8%) 391 6

Sardinia Flood 2013 597 717 (73.5%) 194 (19.9%) 65 (6.6%) 51 (5.2%) 976 5, 6, 7

Amatrice Earthquake 2016 7,079 – – – 21 (0.2%) 10,226 7

the twofold goal of discarding irrelevant tweets and labeling
the relevant ones according to the presence (or lack thereof)
of damage mentions. In our system, “damage” refers both
to damage to buildings and other structures and to injuries,
casualties, and missing people. In other words, damage
encompasses all harmful consequences of an emergency on
infrastructures and communities.

In this work, we approach the damage detection problem
as a two-levels binary classification task. For our purposes,
we are interested in identifying four different classes of
tweets:

– Not relevant: tweets not related to a natural disaster.
– Relevant: tweets related to a natural disaster.
– Without damage: tweets related to a natural disaster but

which do not convey information relevant to damage
assessment.

– With damage: tweets related to a natural disaster which
convey information relevant to damage assessment.

At the first level, the binary classifier (sub-module Content-
Filtering in Fig. 1) acts as a filter to discriminate between
not relevant and relevant tweets, allowing only the latter
ones to pass over to the second level. The classifier at the
second level (sub-module DamageDetector in Fig. 1) dis-
criminates between tweets containing relevant information
about damage and those not containing information relevant
for damage assessment.

We built the two binary classifiers using the Support Vec-
tor Machines (SVM) algorithm (Cortes and Vapnik 1995)
with a simple linear kernel as machine learning method.28

The set of features used by the single classifier was obtained
from tweets by analyzing the textual content of a tweet
using an approach based on word embeddings (Bengio et al.
2003).

The NLP (Natural Language Processing) research field
has gained much attention in the last years, due to the
renewed interest in neural networks technologies (e.g.,
deep learning), the continuous growth of the computational
power of the CPUs and GPUs, and the explosion of

28As software implementation we used the SVC class available in the
scikit-learn Python package.

available data that can be used to train these neural networks
in an unsupervised way. In this work, we specifically
used the approach proposed by Mikolov et al. (2013)
describing the word2vec software, which is currently the
most popular model for embeddings used in NLP-related
tasks. Word embeddings techniques are an elegant solution
to the problem of the features sparseness in document
vectors created by using classic approaches like bag-of-
words, char-N-grams, or word-N-grams (Sebastiani 2002).
From one side, they aim to create a vector representation
with a much lower dense dimensional space. On the
other side, they are useful for extracting semantic meaning
from text, to enable natural language understanding by
learning the latent context associated with every specific
word extracted from training data. More formally, distribute
word representations (word embeddings) learn a function
W : (word) → Rn that maps a word into a vector where
each dimension models the relation of that specific word
with a specific latent aspect of the natural language,
both syntactically or semantically. The vectors are learned
through the training of neural language models together
with the parameters of the network from a set of
unannotated texts and according to an objective function
(e.g., distributional hypothesis29) (Bengio et al. 2013).
The resulting word vectors are computed to maintain
the semantic/syntactic relationship existent between words.
They allow to (i) visualize the vectors of similar words
very close into a given metric space (e.g., visualize the
word embeddings space on 2-D space through techniques
like t-SNE); (ii) compute algebraic operations on vectors
to point out some specific characteristic of the data (e.g.,
W(“queen”) ∼= W(“king”)−W(“man”)+W(“woman”)).

The approach we used in our system to build the
damage-detection component is entirely different from the
one presented in our recent work on the same research
topic (Avvenuti et al. 2016b). In our previous work, we built
this component using a multiclass classifier based on SVM
with a linear kernel but operating with features extracted
from training data using classic NLP techniques (Cresci

29The meaning of this hypothesis is that words appearing in similar
contexts often have a similar meaning.
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et al. 2015b). The classifier based on classic NLP guarantees
a good accuracy at classification time, but it has some
significant drawbacks that we aim to mitigate in this work.
In particular, in the past work , we used five different classes
of features (e.g., lexical text features, morphosyntactic
features, sentiment-analysis features, etc.) that are almost
language-dependent and extracted with a quality level
strongly dependent from the set of NLP tools and resources
available to analyze the textual data. The choice of which
features to extract (often referred to as the “feature
engineering” problem) is a non-trivial task that must be
solved to provide the classifier a set of features sufficiently
informative for the resolution of the specific problem, given
the input domain. Moreover, the total number of features
extracted in this way is very high (in the order of several
hundred-thousands features), and it has a severe impact on
the system in terms of performance both at training and
classification time. This performance degradation depends
both on the complexity of the SVM algorithm (which
growths linearly with the number of features) and the time
spent to use external NLP tools to enrich data. Conversely,
using our new approach based on word embeddings helps to
handle this type of issues because this technique completely
avoids the feature engineering process and makes the system
almost independent of any specific language. The only
requirement affecting this model is the language coherence
on a set of unannotated textual data used for the training
of the embeddings, a condition often satisfiable very easily
and with no human effort on many application domains
(such as the Twitter domain). In particular, the modules
we developed in this work are focused just on the Italian
language, but the proposed methodology is very easily
adaptable to other different languages, being Twitter a very
popular multilanguage service. Another useful implication
of word embeddings is the reduced number of features used
by the classifier, being often in the order of few hundreds,
and therefore contributing to speed-up learning new models
and classifying new documents.

To validate the goodness of our new proposal based on
embeddings, we compared the F1 effectiveness (Sebastiani
2002) obtained with a 10-fold cross evaluation of both
approaches using the multiclass single-label configuration
proposed in our previous work, as shown in Table 2.
The NLP classifier (reported as NLP) has been tuned as
described in Avvenuti et al. (2016b) while the embeddings
classifier (reported as EMB) has been tuned as in the
following. The word embeddings vectors have been
obtained by training the system on a dataset composed
of the union of the tweets coming from L’Aquila,
Emilia, Sardinia, and Amatrice using the CBOW
method (Mikolov et al. 2013), and the size of the
embeddings was set to 100. Given a tweet, to obtain a single
vector representing the tweet content, we computed the

Table 2 NLP classifier vs. Embeddings classifier in terms of F1
effectiveness compared over the three available labeled datasets

Dataset Damage No damage Not relevant

NLP L’Aquila 0.89 0.87 0.73

Emilia 0.90 0.87 0.49

Sardinia 0.89 0.46 0.29

EMB L’Aquila 0.85 0.82 0.72

Emilia 0.85 0.87 0.52

Sardinia 0.82 0.43 0.33

tweet vector as the averaged sum of the vectors of the words
contained in the text of the tweet.30 The SVM classifier
working over embeddings has been set to use the linear
kernel with the parameter C = 1, and we have handled
unbalanced data distribution among labels by assigning to
each label a weight proportional to its popularity.31 As
reported in the Table 2, the embeddings classifier obtains
very similar results to the NLP classifier in all tested
datasets, confirming that our new approach provides all
previously discussed advantages without sacrificing too
much the accuracy of the damage detection system.

This comparison also suggests that to improve the
accuracy of the embeddings classifier we can operate at
two different levels. Firstly, we can use more training data
to train the classifier: a simple and effective solution is to
merge the four separated datasets (L’Aquila, Emilia,
Sardinia, and Amatrice) into one bigger training
dataset. Secondly, to simplify the task of classification
model’s learning, we can change the target problem from a
multiclass single-label classification problem into a pair of
separated binary classification problems, as described at the
beginning of this section. This last modification also has the
advantage to separate the filter part that identifies relevant
tweets from the damage detection phase. This separation
enables parallel execution of the damage classification task
and the geoparsing task, decreasing the total time required
to process a single tweet entirely.

We tested the system with the proposed improvements
using a 10-fold cross evaluation and by optimizing the
model parameters to build a reasonably good set of
classifiers. The measure used to drive the choice in the best
configuration values is the micro-averaged F1 (Sebastiani

30We did not use more sophisticated methods like “Paragraph
Vector” (Le and Mikolov 2014) because these statistical methods do
not work well for small texts like tweets.
31We used the ’balanced’ value for class weight, see scikit-learn
documentation at http://bit.ly/2g5QSqk. In this way we indicate to
SVM to treat the various labels in different ways during the training
phase, giving more importance to class errors (measured with used loss
function) made for skewed classes.

http://bit.ly/2g5QSqk
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2002). The set of parameters subject to optimization were
the following:

– Embeddings dataset: the dataset used to learn word
embeddings. We have used 5 possible different datasets:
Amatrice, L’Aquila, Emilia, Sardinia, and
the union of all previous ones (All).

– Embeddings size: the size used to represent word
embeddings vectors and consequently the vector size of
a single tweet. The possible set of values are 50, 100,
200, and 400. The default value is 100.

– Class weight: the weight of the errors associated with
the positive class used in the two binary classifiers. The
positive classes were “Not relevant” for filter classifier
and “With damage” for damage classifier. The possible
set of values were 1.0, 1.5, 2.0, 2.5 and “Balanced”
(same meaning as explained in footnote 33). The default
value is ’Balanced’.

– C: indicates the cost penalty associated with a
misclassification. The possible set of values are ∈ [0,
12] with a step increment of 0.1. The default value is
1.0.

To avoid testing all possible combinations of the above
parameters, and to choose a reasonably good set of
parameter values, we followed a simplified procedure
as illustrated in the following. Using the order of the
parameters as described above, we optimize one parameter
at a time testing the full set of values for that specific
parameter and using the default values for the other
parameters. In case one of the other parameters has been
optimized already, we use its best-found value instead. The
dataset used to evaluate the system, composed by the union
of the L’Aquila, Emilia and Sardinia datasets, has
been generated in two different versions, one for filtering
and one for damage detection. In the case of filtering,
every tweet in the dataset originally labeled with “With
damage” or “Without damage” labels has been relabeled
with “Relevant” label, resulting in a final dataset containing
4,351 relevant tweets and 857 not relevant tweets. In the
case instead of damage detection, every tweet in the dataset
originally labeled with “Not relevant” has been relabeled
with “Without damage” label, resulting in a final dataset
containing 3,672 tweets marked with “Without damage”
label and 1,536 tweets marked with “With damage” label.

In Tables 3 and 4 we report the experimental results
obtained from the optimization process, respectively while
building the filter classifier and the damage classifier.
Except for theC parameter, which we report only as the best
value found, we have marked with ** the best configuration
found among all tested ones. We reported in bold the best
F1 results (after the optimization of parameters) obtained
considering respectively the class “Not relevant”, the class
“Relevant” and the micro averaged results between those

two classes. In the case of parameters “Embeddings dataset”
and “Embeddings size” in both type of classifiers the best
results are obtained with the full dataset (All) and 100 as
the dimension of embeddings.32 The optimal weight class
values are different for each classifier reflecting the fact that
the data distribution is very different between the two used
datasets. In particular, the dataset used for filter classifier is
more unbalanced towards relevant tweets, resulting in more
variance in the results obtained for each tested configuration
and in general providing quite low F1 values for class “Not
relevant” (∼ 0.5). Anyway, the results also show that the
errors made for this last class by the filter classifier are
partially recovered by the damage classifier, considering
that the F1 accuracy on both damage classes is remarkably
high (> 0.8 in both cases), resulting into an effective and
useful implementation of the damage detection component.

The results discussed above are obtained exploiting ideal
conditions for data availability – i.e., each event typology is
well represented in the training data. In Table 5 we report
transfer learning results obtained by training the system
(specifically, the damage classifier) on data related to a
given event and by reusing the learned model on data related
to a different event (Pan and Yang 2010). This scenario
better resembles the real-world operative conditions in the
aftermath of an emergency. We performed the experiments
using the optimal parameters reported in Table 4, this time
using each available dataset separately, with a split of 70/30
between training and test data. Each row corresponds to the
set of training data used, while each column corresponds
to the set of data tested. We reported in bold the best
micro F1 results obtained by fixing a test dataset and
varying the training dataset as learning data. The table
shows that the best results are obtained, for each tested
dataset, when the corresponding training data is used (e.g.,
Emilia vs. Emilia). The loss in classifier’s effectiveness
is acceptable when considering events of the same type (e.g.,
L’Aquila and Emilia, which are both earthquakes) with
a deterioration in performance comprised between 6.2% and
19.1%. Instead, for events of a different type, the results
are remarkably worse (e.g., in Sardinia vs. Emilia
the loss for Emilia is 81.2% with respect to the best
obtainable effectiveness). These experiments confirm the
conclusions reported by other similar works in the literature
on this research topic, such as those reported in Cresci et al.
(2015b). In conclusion, to obtain a reasonable effectiveness,
we suggest to possibly train the system using datasets that
cover all the possible types of events that the system should
process.

32In case of configurations with equal results in terms of F1 we prefer
to choose those having more balanced values between precision and
recall measures.
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Table 3 Choice of optimal parameters for embeddings classifier filtering relevant/not relevant tweets

Not relevant Relevant Micro avg results

Configuration Pr Re F1 Pr Re F1 Pr Re F1

Emb. dataset Amatrice 0.28 0.73 0.41 0.92 0.63 0.75 0.82 0.65 0.69
L’Aquila 0.26 0.89 0.40 0.96 0.50 0.65 0.84 0.56 0.61
Emilia 0.28 0.82 0.41 0.94 0.58 0.72 0.83 0.62 0.67
Sardinia 0.21 0.85 0.34 0.93 0.37 0.53 0.81 0.45 0.50
All ** 0.36 0.79 0.49 0.95 0.72 0.82 0.85 0.73 0.76

Emb. size 50 0.35 0.80 0.48 0.95 0.71 0.81 0.85 0.72 0.76
100 ** 0.36 0.79 0.49 0.95 0.72 0.82 0.85 0.73 0.76
200 0.35 0.79 0.49 0.94 0.72 0.81 0.85 0.73 0.76
400 0.35 0.79 0.49 0.95 0.71 0.81 0.85 0.73 0.76

Class weight 1.0 1.00 0.00 0.00 0.84 1.00 0.91 0.86 0.84 0.76
1.5 0.42 0.23 0.30 0.86 0.94 0.90 0.79 0.82 0.80
2.0 ** 0.44 0.54 0.48 0.91 0.86 0.88 0.83 0.81 0.82
2.5 0.42 0.59 0.49 0.91 0.84 0.88 0.83 0.80 0.81
Balanced 0.36 0.79 0.49 0.95 0.72 0.82 0.85 0.73 0.76

Best C 9.1 0.43 0.56 0.49 0.91 0.86 0.88 0.83 0.81 0.82

6 Geoparsing

Geoparsing – namely, the resolution of toponyms in a
textual document to a set of geographic coordinates –
is typically considered the focal point of crisis mapping
and has been faced since the diffusion of the Web. This

task is typically solved extracting toponyms from a text and
looking up for matches in gazetteers containing all the pos-
sible matches between a set of place names and their geo-
graphic coordinates (Middleton et al. 2014). This approach
requires an offline phase where the geoparsing system is
specifically set to work in a geographically-limited region.

Table 4 Choice of optimal parameters for embeddings classifier identifying with damage/without damage tweets

Without damage With damage Micro avg results

Configuration Pr Re F1 Pr Re F1 Pr Re F1

Emb. dataset Amatrice 0.92 0.75 0.82 0.58 0.85 0.69 0.82 0.77 0.78
L’Aquila 0.87 0.89 0.88 0.72 0.69 0.70 0.83 0.83 0.83
Emilia 0.95 0.88 0.91 0.76 0.89 0.82 0.89 0.88 0.89
Sardinia 0.91 0.89 0.90 0.74 0.79 0.76 0.86 0.86 0.86
All ** 0.96 0.87 0.91 0.75 0.92 0.83 0.90 0.89 0.89

Emb. size 50 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89
100 ** 0.96 0.87 0.91 0.75 0.92 0.83 0.90 0.89 0.89
200 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89
400 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89

Class weight 1.0 0.93 0.92 0.92 0.81 0.84 0.82 0.89 0.89 0.89
1.5 ** 0.95 0.89 0.92 0.78 0.88 0.83 0.90 0.89 0.89
2.0 0.96 0.88 0.92 0.76 0.91 0.83 0.90 0.89 0.89
2.5 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89
Balanced 0.96 0.87 0.91 0.75 0.92 0.83 0.90 0.89 0.89

Best C 0.4 0.95 0.90 0.92 0.78 0.88 0.83 0.90 0.89 0.89
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Table 5 Transfer-learning results obtained with SVM classifiers
using embeddings representation across L’Aquila, Emilia and
Sardinia datasets

Training/Test Without damage With damage Micro F1

F1 F1

L’Aquila

L’Aquila 0.92 0.81 0.89

Emilia 0.75 0.66 0.72 (−19.1%)

Sardinia 0.19 0.50 0.29 (−67.4%)

Emilia

L’Aquila 0.93 0.69 0.90 (−6.2%)

Emilia 0.98 0.86 0.96

Sardinia 0.17 0.27 0.18 (−81.2%)

Sardinia

L’Aquila 0.63 0.85 0.80 (−0.0%)

Emilia 0.10 0.84 0.64 (−20.0%)

Sardinia 0.59 0.88 0.80

Although this solution is effective for limited areas and
offers a fast response, it is practically infeasible to load
associations between toponyms and coordinates for a wide
region or a whole country (Avvenuti et al. 2016b). Another
challenge related to geoparsing is that of toponymic pol-
ysemy – that is, the situation in which a toponym might
have different meanings, thus possibly referring to differ-
ent places, according to the context in which it is used (e.g.,
the word “Washington” may refer to the first US president,
to the US capital, to the US state, etc.).33 This last prob-
lem is particularly relevant for geoparsing systems based
on gazetteers lookups since with this approach there is no
way to perform a disambiguating operation of the toponyms
to understand their actual meanings (Cresci et al. 2015a;
Avvenuti et al. 2016b).

To overcome these limitations, the GeoParsing sub-
module of theDataEnricher, shown in Fig. 1, adopts seman-
tic annotators in the geoparsing process. Semantic anno-
tation is a process aimed at augmenting a plain-text with
relevant references to resources contained in knowledge-
bases such as Wikipedia and DBpedia. The result of
this process is an enriched (annotated) text where men-
tions of knowledge-bases entities have been linked to the
corresponding Wikipedia/DBpedia resources. This anno-
tation process is highly informative since it enables the
exploitation of the rich information associated with the
Wikipedia/DBpedia resources that have been linked to the
annotated text. Here, we exploit semantic annotations for
our geoparsing task by checking whether knowledge-bases

33http://en.wikipedia.org/wiki/Washington.

entities, which have been linked to our tweets, are actu-
ally places or locations. Semantic annotation also has the
side effect of alleviating geoparsing mistakes caused by
toponymic polysemy. In fact, some terms of a plain-text
can potentially be linked to multiple knowledge-bases enti-
ties. Semantic annotators automatically perform a disam-
biguating operation and only return the most likely refer-
ence to a knowledge-base entity for every annotated term.
Overall, our proposed geoparsing technique overcomes 2
major problems affecting current state-of-the-art crisis map-
ping systems: (i) it avoids the need to preload geographic
data about a specific region by drawing upon the mil-
lions of resources of collaborative knowledge-bases such
as Wikipedia and DBpedia, (ii) it reduces the geoparsing
mistakes caused by toponymic polysemy that are typi-
cal of those systems that perform the geoparsing task via
lookups in preloaded toponyms tables. Another additional
useful characteristic of our geoparsing technique is that it
is unsupervised, unlike the one presented in Gelernter and
Mushegian (2011).

Because of these reasons, our geoparsing technique is
particularly suitable for being employed in a system aimed
at producing crisis maps impromptu, such as the one that
we are proposing. The possibility to link entities mentioned
in emergency-related messages to their pages also allows
exploiting the content of their Wikipedia/DBpedia pages
to extract other useful information about the unfolding
emergency. Most commonly used semantic annotators also
provide a confidence score for every annotation. Thus, it
is possible to leverage this information and only retain the
most reliable annotations, discarding the remaining ones.

Among all currently available semantic annotators,
CrisMap is currently based on TagMe (Ferragina and
Scaiella 2010), DBpedia Spotlight (Pablo et al.
2011), and Dexter (Trani et al. 2014), three well-known,
state-of-the-art systems (Usbeck et al. 2015). TagMe is
a service of text annotation and disambiguation devel-
oped at the University of Pisa. This tool provides a Web
application34 as well as a RESTful API for programmatic
access and can be specifically set to work with tweets.
Language-wise, TagMe supports analyses on English, Ital-
ian, and German texts. Since TagMe is based on the
Wikipedia knowledge-base, the annotated portions of the
original plain-text are complemented with the ID and the
name of the linked Wikipedia page. TagMe also returns
a confidence score rho for every annotation. Higher rho
values mean annotations that are more likely to be cor-
rect. After annotating a tweet with TagMe, we resort
to a Wikipedia crawler to fetch information about all
the Wikipedia entities associated to the annotated tweet.

34https://tagme.d4science.org/tagme/.

http://en.wikipedia.org/wiki/Washington
https://tagme.d4science.org/tagme/
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Table 6 Contribution of our GeoParsing sub-module, used in conjunction with the different semantic annotators, on the number of geolocated
tweets

GPS DBpedia Spotlight Dexter TagMe

L’Aquila 0 (0%) 271 (25.5%) 578 (54.4%) 721 (67.9%)

Emilia 205 (6.5%) 975 (30.8%) 1,037 (32.7%) 1,671 (52.7%)

Milan 15 (3.8%) 99 (25.3%) 320 (81.8%) 364 (93.1%)

Sardinia 51 (5.2%) 530 (54.3%) 784 (80.3%) 582 (59.6%)

In our implementation, we sort all the annotations returned
by TagMe on a tweet in descending order according to
their rho value, so that annotations that are more likely
to be correct are processed first. We then fetch informa-
tion from Wikipedia for every annotation and check whe-
ther it is a place or location. The check for places/locations
can be simply achieved by checking for the coordinates
field among Wikipedia entity metadata. We stop process-
ing annotations when we find the first Wikipedia entity
that is related to a place or location, and we geolocate
the tweet with the coordinates of that entity. The very
same algorithmic approach is employed for the exploitation
of the other semantic annotators: DBpedia Spotlight
and Dexter. Indeed, it is worth noting that our proposed
geoparsing technique does not depend on a specific seman-
tic annotator, and can be implemented with any annotator
currently available, or with a combination of them. Regard-
ing language support, DBpedia Spotlight is capable
of performing analyses for 16 different languages, includ-
ing English and Italian, and also allowing users to train
models for additional languages. Instead, Dexter natively
supports only the English language at the time of writing,
but can be extended to work with any other language, simi-
larly to DBpedia Spotlight. We used our GeoParsing
sub-module to geocode all the tweets of our datasets. Then,
following the same approach used in Middleton et al. (2014)
and Gelernter and Balaji (2013), we manually annotated a
random subsample of 1,900 tweets to validate the geop-
arsing operation. Noticeably, our system achieves results
comparable to those of the best-of-breed geoparsers with
an F1 = 0.84, whether the systems described in Middle-
ton et al. (2014) and Gelernter and Balaji (2013) scored in
the region of F1 ∼ 0.80. Furthermore, to better quantify
the contribution of our GeoParsing sub-module, we report
in Table 6 the number of natively geolocated tweets (GPS
column) and the number of tweets geolocated by our GeoP-
arsing sub-module via TagMe, DBpedia Spotlight,
and Dexter. As shown, our system geoparses the high-
est number of tweets based on the annotations of TagMe,
for all datasets, except for the Sardinia one, for which
the best results are achieved with Dexter’s annotations. In
any case, our GeoParsing sub-module managed to geoparse
from a minimum of 25.3% tweets to a maximum of 93.1%

tweets of the Milan dataset, meaning that almost all tweets
of that dataset were associated to geographic coordinates,
allowing to use such tweets in our crisis maps.

7Mapping Data

Among the diverse data visualization techniques, one
that is commonly employed to represent the geographic
distribution of a statistical variable is the choropleth map.
A choropleth map is a thematic representation in which
subareas of the map are filled with different shades of color,
in proportion to the measurement of the given variable
being displayed.35 This visualization technique is usually
exploited to depict the spatial distribution of demographic
features such as population, land use, crime diffusion, etc.
In CrisMap we exploit the same visualization technique to
show the spatial distribution of damage in the aftermath of
an emergency. A clear advantage of exploiting choropleth
maps instead of the typical on/off maps used in previous
works (Middleton et al. 2014), lies in the possibility to
apply different shades of color to the different areas of the
map, according to the estimated extent of damage suffered
by that area. This complements well with the prioritization
needs that arise in the first phases of an emergency response.
Most notably, our system can be easily extended to produce
different end-results. In other words, we can choose to
produce a choropleth crisis map or any other visualization
of the analyzed tweets exploiting the high flexibility of the
Kibana interface.

Notably, CrisMap is capable of producing choropleth
crisis maps with a spatial resolution at the level of
municipalities. In any case, when tweets are accurate
enough, it is also possible to precisely identify objects
(e.g., a specific building) that suffered damage. It is also
worth noting that the choice to produce crisis maps showing
the estimated degree of damage among the different
municipalities is not due to a region-level only geoparsing.
Indeed, the exploitation of semantic annotators potentially
allows geocoding every entity that has an associated

35https://en.wikipedia.org/wiki/Choropleth map.

https://en.wikipedia.org/wiki/Choropleth_map
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Wikipedia/DBpedia page. So, in those cases when a tweet
contains detailed geographic information, it is possible to
geoparse it to building- or even street-level. Our choice to
produce crisis maps at the level of municipalities is instead
motivated by an effort to rigorously compare our crisis maps
to data officially released by the Italian Civil Protection
agency, which reports damages at the municipality level.

Here, we first show the accuracy of our visualizations
referring to two case studies, the Emilia earthquake and
the Sardinia flood. We compare the maps realized with
SM data against those produced using authoritative data
provided by Italian civil protection agency. Finally, we
present results obtained by applying CrisMap to study
the Amatrice earthquake. Unfortunately, there is no fine
economic loss estimation for the Amatrice earthquake,
since the same area suffered a second severe shake just
a few months after the first one when official damage
surveys still had to be completed. Nonetheless, in the case
of the Amatrice earthquake, we are still able to provide a
qualitative case-study of our crisis maps.

7.1 Quantitative Validation

The authoritative data that we used for the comparison
is the economic loss/damage (quantified in millions
of euros) suffered by the different municipalities, as
assessed by the Italian Civil Protection agencies of Emilia
Romagna and Sardinia. Specifically, for the Emilia
earthquake, authoritative data has been collected via in
situ damage surveys carried in out in the months after
the earthquake. Results of such surveys are published in
the http://www.openricostruzione.it Web site, maintained
by the regional administration of Emilia Romagna, and
comprise detailed information on the economic losses
suffered as a consequence of the earthquake, as well
as on the overall status of the rebuilding process. With
regards to the Sardinia flood of 2013, the Italian Civil
Protection Agency surveyed all damaged municipalities and
reported the estimated economic losses suffered by private
properties, public infrastructures, and production (industrial
and agricultural) facilities. Final results of the damage
survey have been published in a public document36 on
February 24, 2014.

It is possible to perform a first quantitative evaluation of
our crisis maps following the approach used in Middleton
et al. (2014), that is, evaluating the system as a classification
task. Under this hypothesis, the goal of the system is

36http://www.regione.sardegna.it/documenti/1 231 20140403083152.
pdf - Italian Civil Protection report on damage to private properties,
public infrastructures, and production facilities.

to detect damaged municipalities disregarding of those
requiring prioritized intervention – namely, those that
suffered the most damage. Thus, we can exploit well-known
machine learning evaluation metrics to compare crisis maps
generated by our system with those obtained from official
data. The comparison is performed by checking whether a
municipality with associated damage to authoritative data
also appears as damaged in our crisis maps.

Table 7 reports the results of this comparison for the
Emilia earthquake. We first consider all the municipalities
of the affected region, namely the Emilia Romagna region,
and then we repeat the comparison considering only those
municipalities that suffered a significant degree of damage
(more than 10% of the damage suffered by the Ferrara
municipality, which is the maximum value for the Emilia
earthquake). As clearly highlighted by Table 7, the proposed
crisis mapping system can accurately identify the areas
where the damage occurred. However, not all the damaged
municipalities are identified by the system, as represented
by the low Recall value in the first row of the table. Regard-
less, when we remove from the comparison those munici-
palities that suffered the lowest damage, the Recall metric
reaches a value of 0.813, showing the system’s ability in
detecting areas that suffered a significant amount of dam-
age. In other words, the majority of the mistakes of our
system occurred in municipalities that suffered relatively
low damage, and not on those requiring immediate atten-
tion. The same also applies for the Sardinia flood, as
reported in Table 8, with an improvement of the Recall met-
ric from 0.128 to 1 when considering municipalities that
suffered more than 2% of the maximum damage (i.e., the
damage suffered by the municipality of Olbia).

Overall, the results obtained by our system concerning
the detection of damaged areas are comparable to those
reported in Middleton et al. (2014). However, our system
operated with a fine geographic resolution on 2 case
studies of natural disasters that affected extensive, rural, and
sparsely populated areas. Conversely, the system presented
in Middleton et al. (2014) has a fine resolution only for an
emergency affecting a densely and uniformly populated area
(Manhattan, New York) while it shows coarse resolution
results for a disaster striking a wide area (the state of
Oklahoma).

In addition to detecting damaged areas, CrisMap
also visually sorts municipalities using a color hue that
is proportional to the intensity of the damage suffered.
In other words, it order ranks municipalities based on
the (normalized) number of tweets conveying damage
information. This original feature opens up the possibility
to perform a finer evaluation of our crisis maps than that
carried out in previous works. Indeed, it is possible to
compare the ranking of damaged municipalities as obtained

http://www.openricostruzione.it
http://www.regione.sardegna.it/documenti/1_231_20140403083152.pdf
http://www.regione.sardegna.it/documenti/1_231_20140403083152.pdf
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Table 7 Binary detection of damaged municipalities for the Emilia earthquake

Evaluation metrics

Task Precision Recall Specificity Accuracy F-Measure MCC

Detection of all damaged areas 1.000 0.178 1.000 0.797 0.303 0.375

Detection of areas that suffered significant damage 1.000 0.813 1.000 0.992 0.897 0.898

from tweets, with a ranking derived from authoritative
sources, such as those provided by civil protection agencies.
A crisis mapping system that can rapidly identify the most
damaged areas would become a valuable tool in the first
phases of emergency response when resource prioritization
plays a dominant role. A possible way of performing such
evaluation is by employing metrics that are typically used to
assess the performance of ranking systems, such as search
engines. Search engines are designed to return the most
relevant set of results to a given user-submitted query. In
our scenario, we can consider CrisMap as a basic “search
engine” that returns a list of areas and that is specifically
designed to answer a single, complex query: “which areas
suffered the most damage?”. Search engines are evaluated
with several metrics and indices, aimed at capturing a
system’s ability to return desired resources (e.g., Web
pages, text documents, etc.) among the first results. We can
then evaluate the ability of CrisMap to correctly identify
areas that suffered a high degree of damage by employing
evaluation metrics of search engines. Specifically, among
such well-known metrics are the normalized Discounted
Cumulative Gain (nDCG) (Järvelin and Kekäläinen 2002)
and the Spearman’s Rho coefficient. The nDCG measures
the performance of a “recommendation” (or ranking)
system based on the graded relevance of the recommended
entities. It is the normalized version of the Discounted
Cumulative Gain and ranges from 0 to 1, with 1 representing
the ideal ranking of the entities. This metric is commonly
used in information retrieval to evaluate the performance of
web search engines:

DCGk =
k∑

i=1

2reli − 1

log2(i + 1)

nDCGk = DCGk

IDCGk

where reli is the graded relevance of the result at position
i and IDCGk is the maximum possible (ideal) DCG for a
given set of entities.

Spearman’s Rho instead measures the correlation
between two variables described using a monotonic func-
tion, and it is evaluated as:

ρ = 1 − 6
∑

i D2
i

N(N2 − 1)

where Di = ri − si is the difference between actual position
(given by the system) and expected position (given by the
reports). For instance, it measures the correlation between
the ideal output of the system (Civil Protection ordering)
with the result of the system and describes how likely one
variable is going to change (tweets with damage) given
the other (damage amount). Being a correlation coefficient,
it ranges from −1 to 1, with values in the region of 0
indicating no correlation. Using these metrics, we assessed
the ability of our system in detecting the most stricken areas
against authoritative data based on the economic damage
suffered by the affected municipalities. Our experiments
confirm that there is a considerable agreement between
tweet-derived rankings and those based on authoritative
data, as reported in Table 9.

A simple test for statistical significance of our ranking
results with Spearman’s Rho further supports our claims,
achieving a confidence score > 99% for both the Emilia
earthquake and the Sardinia flood. Overall, results of
our system in detecting all damaged areas, as well as
the most damaged ones, demonstrate the applicability and

Table 8 Binary detection of damaged municipalities for the Sardinia flood

Evaluation metrics

Task Precision Recall Specificity Accuracy F-Measure MCC

Detection of all damaged areas 0.833 0.128 0.993 0.814 0.222 0.280

Detection of areas that suffered significant damage 0.500 1.000 0.995 0.995 0.667 0.705
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Table 9 Ranking evaluation of most damaged municipalities

Dataset nDCG Spearman’s Rho

Emilia 0.770 0.698

Sardinia 0.647 0.408

the usefulness of CrisMap also in extensive, rural, and
sparsely populated regions.

7.2 The Qualitative Amatrice Case-study

Figure 2 shows an excerpt of the CrisMap dashboard
in the aftermath of the Amatrice earthquake. All the
visualizations shown in figure are related to the Amatrice
dataset, collected during the first hour from the earthquake
occurrence. On top of Fig. 2 are two choropleth maps
– visualizations Fig. 2a and b – obtained by embedding
the choropleth plugin, that we specifically developed
for CrisMap, inside the Kibana interface. Figure 2a
shows the map generated from all the tweets that we
collected, while Fig. 2b is obtained only from damage
tweets. Our choropleth maps highlight the most damaged
municipalities, namely Norcia, Amatrice and Accumoli,
located in the vicinity of the epicenter. The map in Fig. 2b,
related only to damage tweets, is rather sparse, since in the
first hour after the earthquake only a tiny fraction of tweets

Fig. 2 Excerpt of the CrisMap dashboard in the aftermath of the
Amatrice earthquake. The dashboard comprehends our ad-hoc
choropleth maps showing the spatial distribution of tweets, a temporal
view of collected and classified tweets per minute, and a word-cloud.

The dashboard is easily extensible and customizable, allowing end-
users to include more visualizations by choosing from the many ones
natively provided by Kibana

conveyed damage reports. This aspect is also clearly visible
from Fig. 2d, showing the volume of tweets collected and
classified by CrisMap every minute. As shown, tweets
reporting damage (red-colored) have been shared almost
only in the last minutes of the first hour. Yet, despite the
very few tweets reporting damage, the word-cloud of Fig. 2c
highlights the key consequences of the earthquake: (i) the
3 most damaged villages Norcia, Amatrice, Accumoli; (ii)
and several mentions of damage, such as “crolli” (collapsed
buildings) and “danni” (widespread damage).

Notably, all the visualizations of Fig. 2 are interactive
and are updated in real-time, as new data is collected and
analyzed by CrisMap. Regarding user interactions, for
instance, it is possible to click on a specific municipality
in the choropleth maps to update all other visualizations
by showing only data that is related to the selected
municipality. Alternatively, one could click on a word in the
word-cloud to visualize the temporal and spatial distribution
of tweets containing that word. These functionalities open
up the possibility to promptly perform drill-down analyses
of the most relevant facts.

8 Conclusion

We presented CrisMap: a crisis mapping system capa-
ble of supporting emergency responders during emergency
management of natural or man-made disasters. The sys-
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tem can process incoming SM data from Twitter to quickly
produce crisis maps that are useful to prioritize the allo-
cation of available resources, especially in the first phases
of the crisis, towards the populations and territories most
affected by the specific disaster. The proposed solution
is designed and built using Big Data technologies, allowing
the system to be scalable, fault-tolerant, and capable of pro-
cessing incoming data in near-real-time. To overcome the
challenges resulting from the unstructured nature of Twit-
ter data and to identify useful information for our purposes,
we analyze the data using a two-fold perspective. On the
one hand, we introduced a damage detection component
exploiting word embeddings and a SVM classifier to detect
messages reporting damage to infrastructures or injuries to
the population. On the other hand, we proposed a message
geolocation component that performs the geoparsing task
by exploiting online semantic annotators and collaborative
knowledge-bases. The approach using word embeddings
has also been compared with a traditional one based on clas-
sic NLP techniques, pointing out the potential advantages of
the former concerning complexity and performance of the
proposed method. The accuracy and the reliability of the
system were validated analytically comparing the experi-
mental results of CrisMap against the authoritative data for
two past disasters. Furthermore, we also performed a qual-
itative evaluation of the system on a case-study of a recent
severe earthquake in Italy for which authoritative data are
not available.

The proposed system offers some room for further impro-
vements, to increase the readability of the maps and, in ge-
neral, for acquiring a better situational awareness of unfol-
ding events. With regards to geoparsing results, recent deve-
lopments of semantic annotation tools open up the pos-
sibility to provide more implementations of our proposed
geoparsing technique. Therefore we envision the possibil-
ity to simultaneously exploit multiple semantic annotators
in an ensemble or voting system. In the future, this approach
could allow to obtain even better results and to overcome
the possible limitations of a single annotator.

Moreover, to date, CrisMap only exploits textual data,
but we believe that multimedia data, like images and live-
videos, could contribute critical information for emergency
responders. Thus, in the future, we aim at providing analytic
and visual support for multimedia content since it appears
as a promising direction for research.

Other avenues of future experimentation might be
related to multi-source mining. Indeed, although Twitter is
nowadays one of the preferred SM sources, given its “open”
policies on providing data to third parties, data collection
from multiple sources could mitigate the bias introduced by
the analysis of a single SM.
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