Towards multi-agency sensor information integration for disaster management

Farzad Alamdar, Mohsen Kalantari, Abbas Rajabifard

Summary

- "Improves real-time spatial information usage by integrated multi-agency(sensor data from many different sources) in a disaster management system."
- Displayed as maps.
- Identifies current issues of multi-agency integration.
- Proposes a standardised approach to overcome current integration issues.
- Introduces Geographic Information System(GIS)based software, and Intelligent Decision Support System-(IDDSS)Sensor to provide the functions of the standardised approach.

Background

- Victoria, Australia
- Aimes at urban floods and water levels firstly
 - Wildfires etc
 - Large and small scales
- Geographical situation displayal(Maps)

Current multi - agency sensor integration

Issues with the current process

- Lack of access to multi -agency sensor data
 - Mostly only road cluster, and meteorological observations
- Lack of interoperability in multi -agency sensor data exchange
 - Different data format(Raw text data, binary, different XML variants).
 - Different data access interfaces.
- Inconsistency in multi -agency sensor data
 - Many different sensor data stakeholders, leads to inconsistent or incomplete sensor data specifications.
- Lack of automated usage of multi -agency sensor data
 - Only raw real-time data feeds, which are not machine-readable.

The new proposed approach

Introduced steps

- Standardization
- Harmonization
- Integrate data model
- Sensor web service-based operations

Standardization

- Introduces OGC SWE framework of standards
 - Domain independence
 - Producer independence
 - Openness
 - Inter-organizational interoperability
- Especially for real-time management

"Ensure consistency between sensor stakeholders by providing a common agreement." Open Geospatial Consortium (OGC) Sensor Web Enablement initiative (SWE)

Harmonization

"Automatically identify and resolve the remaining inconsistencies in the received data."

- On-the-fly validation
 - Consistency checking
 - Validity checking
- Element existence
- Element null
- And more...

Harmonization process chain

Data model integration

"Establish the relations between organizational sensor data that reach EMO with static spatial data stored in EMO's database."

- Prevents separate and detached data layers
- A database model that provides linkage between the sensor and spatial data sources
 - Flood risk scenario maps
 - Flood forecasts, warnings and observations

Emergency Management Organization(EMO)

Integration class diagram

Sensor web service - based operations

"Consume the standardized, harmonized and connected sensor data and send back the valueadded emergency information"

• Creates a Response operation

The GUI of IDDSS - Sensor client application

Harmonization results

Harmonization Result for SOS: City of Melbourne X					
Sensor: OM/P	OM/PedestrianCounting/Col270				
Metadata element	Value	Result	Action		
position	mobile=false	Recognized_mobility	NA		
	referenceFrame=urn:ogc:def:crs:EPSG::4326	Compliant_position	NA		
	sensorPosition=[-37.81573486328125, 144	Compliant_position	NA		
featureOfInterest	Road_Col1221	Mismatched_fOI	CollinsStreet_1221 is selected		
outputs	urn:x-ogc:def:phenomenon:OGC:PeopleCount	Compliant_output	NA		
classification	sensorType= null	Invalid_element_critical	ContinuouslyMonitoring 💽		
capabilities	status= active	Recognized_status	NA		
	frequency= 10 min	Recognized_frequency	NA		
l S	measurementRange= [0, 10000]	Recognized_measurement	NA		
	observedBBOX= null	Invalid_element_noncritical	NA		
		Zoom to s	ensor Apply changes OK		

Query management interface

- 2 layers
 - Define query condition for the first observation 0 layer
 - Define query relation 0
 - relational query based on the relations defined in the integration data model
 - Proximity
 - Define query condition for the second 0 observation layer

J. te		Select Obsrvations From		
Define query condition the first observation laye		Observation layer:	COM:UndergroundCarparkOccupi 🗸	
		Observed Properties:	Occupancy:10min 💙	
	OutputType:	Count: Vehicle		
		Condition:	MeasurementRa ♥ >= 50% ♥ +	
- -[Submit Choose Second Offering		
() Define	In Which Has:			
		Relation:	Located on	
 Define query condition for 2 the second observation layer 	With Obsrvations From			
	Observation layer:	VicRoads:TrafficFlow		
		Observed Properties:	Density:10min	
		OutputType:	Numeric: veh/km	
		Condition:	Greater than 💙 200 +	
	Submi	t		

Result of 6 different queries

Conclusion

"Multi-agency sensor data as a potential source for providing real-time spatial information for disaster management"

- GIS-based software IDDSS-Sensor is implemented to support the decision-making of emergency agencies by integrating multiagency sensor information in real-time
- Particular useful during emergency events
- Improvement in inter-agency collaboration through providing more automation in the interaction between organizations

Geographic Information System(GIS) Intelligent Decision Support System-(IDDSS)

Future work

- Expand to other disaster
- Evaluate by questionnaire of based survey of industry expert