

Semantics for the IoT:

Early progress and back to the future

PAYAM BARNAGHI, WEI WANG, CORY HENSON AND KERRY TAYLOR

Extending the Internet

- Smart homes, e-health, transport, ...
- Create situation awareness
 - Enable apps, machines, and users to understand environments
 - \circ Understanding situations / contexts \rightarrow intelligent decisions

Challenges

• Diverse, volatile and ubiquitous

- 90% of world's data generated last 2 years (IBM)
- How to process, integrate and interpret real world data?

- Knowledge hierarchy
 - Lower layer: Produced by IoT resources
 - Upper layer: Structured, machine-readable, enhanced interoperability
 - \circ High-level abstraction \rightarrow meanings and insights of the underlying data
 - IoT data must be structured, annotated, and shared

Figure 1. "Knowledge Hierarchy" in the context of IoT

Importance of semantics

- 25 billion by 2015
- 50 billion by 2020
 - o 55 ZB data
- Semantics \rightarrow increased interoperability \rightarrow fundamental requirement
 - Object addressing, tracking, and discovery
 - \circ Information representation, storage, and exchange
- Principal solutions in realizing IoT
 - Ontologies, semantic annotation, Linked Data, semantic Web services, ...

Interoperability

- Data from devices or humans
 - Attributes of phenomenon / entity from the physical world
 - Combinable to create abstractions of the environment
- Semantic interoperability \rightarrow greater access to data
- I.e. annotation of data \rightarrow machine-interpretable descriptions of data
 - Origin, provider, quality, ...

Ontologies

- Common ontology \rightarrow greater interoperability
 - Benefits users and shareholders alike
- Agreed-upon ontological definitions
 - Requirement for stakeholders to work together
- Global scale semantic interoperability is achievable through ...
 - Common semantic annotation frameworks
 - Ontology definitions
 - Adaptations

Semantic tech in IoT and semantic annotations

- Machine-readable & machine-interpretable metadata
 - Describes IoT resources and data
- Machine-interpretable data != machine-understandable data
 - o RDF, OWL, SPARQL lacks the ability to process and interpret data

- Semantic descriptions and annotations
 - Devices, real-world objects and events, and services and business process models
- Supports the automated management and interaction of IoT systems

Semantic modeling and ontology development

- Ontologies in IoT
 - Descriptions of sensor and sensor networks, IoT resources and services, smart "Things", etc
- W3C Semantic Sensor Networks Incubator Group
 - SSN Ontology describes sensors and sensor network resources
 - High-level schemas for sensor devices, operation & management, observation & measurement data, ...

<u>Semantic descriptions in IoT domain \rightarrow key to achieving autonomous and seamless integration of the</u> <u>IoT data in business applications and services</u>

Linked sensor data pt. 1

- Semantic annotation lacks description of IoT data
- Resources need to be associated with each other
- Effective reasoning and processing mechanism for IoT data?
 - Access to domain knowledge
 - Relating semantically enriched descriptions to other entities

Linked sensor data pt. 2

Linked data relates different resources

- Adopted on the Web
- Four principles:
 - URI's as names for things; unique URI's for everything
 - HTTP URI's to enable name-lookup, accessible through HTTP interfaces
 - RDF information related to URI's looked up by machines or people
 - Linking the URI's to other URI's
- Linked Data in IoT?
 - Semantic data linked to other domain dependent resources
 - i.e. location information
 - SensorMasher

Data abstractions and knowledge extraction

- We need ...
 - Effective querying, analysis, processing of the semantic data, and links between the resources
- Now: SPARQL
 - Data streams
 - Distributed over different networks with diverse types of data
 - Problem: Data is real-time, and data attributes can change over time
 - Dynamicity and agility

Goals for the Internet of Things

- Dynamic and universal network
- Context-aware
- Intelligent decision-making algorithm

Reality?

- Not anytime soon
- We need ...
 - Common frameworks
- Simply too much data
 - No available scalable methods

Dynamicity and complexity, security and privacy

- Dynamicity and complexity
 - Real world data
 - Environment changes, time and location dependent
 - Semantic technologies
 - Describe meaning behind data
 - Enables description of different attributes of resources and networks
 - Pervasiveness and volatility
 - Difficult to scale, high diversity, network/resource constraints, continuous changes, ...
- Security and privacy
 - IoT data is often personal
 - Our environment, status of homes, personal health, …
 - Semantics can help by providing verification measures, requirements, ...
 - We need reliable and efficient solutions