
Practical session



Apache spark Installation:

•Let’s get started using Apache Spark, 

• in just four easy steps… 

•http://spark.apache.org/docs/latest/

8/21/2019 INFO319, autumn 2019, session 2 2



Step 1:

• Install Java JDK 6/7 on MacOSX or Windows

• http://www.oracle.com/technetwork/java/javase/downloads/jdk10-
downloads-4416644.html

• Follow the license agreement instructions 

• Then click the download for your OS 

• Need JDK instead of JRE (for Maven, etc.)

• This is much simpler on Linux… 

sudo apt-get -y install openjdk-7-jdk

8/21/2019 INFO319, autumn 2019, session 2 3

http://www.oracle.com/technetwork/java/javase/downloads/jdk10-downloads-4416644.html


Step 2: Download Spark

•we’ll be using Spark 2.3.1

• See: http://spark.apache.org/downloads.html

•1. download this URL with a browser 

•2. double click the archive file to open it 

•3. connect into the newly created directory

8/21/2019 INFO319, autumn 2019, session 2 4

http://spark.apache.org/downloads.html


Step 3: Run Spark Shell

•We’ll run Spark’s interactive shell… 

• ./bin/spark-shell 

•then from the “scala>” REPL prompt,

8/21/2019 INFO319, autumn 2019, session 2 5



Installation: Optional Downloads: Python

• For Python 2.7, check out Anaconda by Continuum Analytics for a full-
featured platform:

• https://www.anaconda.com/download/

• Documentation: https://conda.io/docs/user-
guide/install/windows.html

• Requirements: https://conda.io/docs/user-
guide/install/index.html#system-requirements

8/21/2019 INFO319, autumn 2019, session 2 6

https://www.anaconda.com/download/
https://conda.io/docs/user-guide/install/windows.html
https://conda.io/docs/user-guide/install/index.html#system-requirements


Step 3: Run Spark Shell with python

• ./bin/pyspark

8/21/2019 INFO319, autumn 2019, session 2 7



Installation: Optional Downloads: Maven

• Java builds later also require Maven, 

• which you can download at: http://maven.apache.org/download.cgi

8/21/2019 INFO319, autumn 2019, session 2 8

http://maven.apache.org/download.cgi


Loading a text file:
• Save these lines into a file called triples.txt in some folder, for example your home folder.
• AbrahamAbel born 1992

• AbrahamAbel livesIn duluth

• AbrahamAbel phone 789456123

• BetsyBertram born 1987

• BetsyBertram livesIn berlin

• BetsyBertram phone _anon001

• BetsyBertram phone _anon002

• _anon001 area 56

• _anon001 local 9874321

• _anon001 ext 123

• _anon002 area 56

• _anon002 local 1234789

• CharleneCharade born 1963

• CharleneCharade bornIn bristol

• CharleneCharade address _anon003

• CharleneCharade knows BetsyBertram

• _anon003 street brislingtonGrove

• _anon003 number 13

• _anon003 postCode bs4

• _anon003 postName bristol

• DirkDental born 1996

• DirkDental bornIn bergen

• DirkDental knows BetsyBertram

• DirkDental knows CharleneCharade

8/21/2019 INFO319, autumn 2019, session 2 9



• In a console (or command prompt, or terminal) window, start the 
Spark shell:

• spark-shell

• From now on, we will run our commands inside the Spark shell, after 
the scala> prompt. Load the triples.txt file into Spark:

• val triples_str = sc.textFile("/home/sinoa/triples.txt")

8/21/2019 INFO319, autumn 2019, session 2 10



• (You must use a forwards-slash: / even on Windows.)

• triples_str is now the name of a Resilient Distributed Dataset inside 
your spark-shell. You can enforce file loading and look at the resulting 
contents of the triples_str RDD with:

• triples_str.collect()

• (In Scala, you can always drop empty parentheses: (), which we will 
do from now - so triples.collect also works.)

8/21/2019 INFO319, autumn 2019, session 2 11



Spark transformations and actions

• We are now ready to try out simple Spark transformations and 
actions: transformations create new RDDs when they are run, 
whereas actions produce side-effects or simpler variables.

• This action counts the number of lines in triples.txt (or strings in 
triples_str):

triples_str.count

8/21/2019 INFO319, autumn 2019, session 2 12



• This transformation is likely to introduce duplicate lines:

• triples_str.sample(true, 0.9, scala.util.Random.nextInt).collect

• Save the result in a new RDD and rerun until truiples_dup contains at least one duplicate 
line:

• val triples_dup = triples_str.sample(true, 0.9, scala.util.Random.nextInt)

• triples_dup.collect

• This transformation removes duplicates:

• triples_dup.distinct.collect

• These are only a few of the simplest Spark transformations and actions. For a full list, see 
this tutorial page:

• https://www.tutorialspoint.com/apache_spark/apache_spark_core_programming.htm 

8/21/2019 INFO319, autumn 2019, session 2 13



• These actions get the first and 5 first lines in triples_str:

triples_str.first

triples_str.take(5)

• This action saves the triples into a subfolder of /home/sinoa/triples_copy:

triples_str.saveAsTextFile("/home/sinoa/triples_copy")

• This transformation creates a new RDD with a sample of non-duplicate 
lines from triples.txt.

triples_str.sample(false, 0.5, scala.util.Random.nextInt).collect

8/21/2019 INFO319, autumn 2019, session 2 14



Unions and intersections
• Save these lines into a file called more_triples.txt:
• DirkDental born 1996

• DirkDental bornIn bergen

• DirkDental knows CharleneCharade

• EnyaEntity born 2002

• EnyaEntity address _anon001

• EnyaEntity knows CharleneCharade

• EnyaEntity knows DirkDental

• _anon001 street emmastrasse

• _anon001 number 7

• _anon001 postArea _anon002

• _anon002 postCode 45130

• _anon002 postName Essen

• These transformation produces all the lines that are in both files and all the lines that are in either file:

val more_triples = sc.textFile("/home/sinoa/more_triples.txt")

triples_str.union(more_triples).collect

triples_str.intersection(more_triples).collect

8/21/2019 INFO319, autumn 2019, session 2 15



Tasks:
1) Use Spark's flatMap transformation to collect an array of distinct resources 

from the triples (i.e., those strings starting with a capital letter).

2) After reduction, the triple <CharleneCharade knows BetsyBertram> only 
appears for CharleneCharade. We want it to appear for BetsyBertram too.

3) After reduction, the triple <_anon001 area 56> appears for _anon001. We 
want to eliminate _anon001 so that it appears for BetsyBertram instead. The 
trick is to use Spark's join transformation in the right way.

4) Include the triples from more_triples.txt in the map-reduce too. Note 
that _anon001 occurs in both files, but represents a different anonymous node.

5) Make sure that your map-reduce job also eliminates nested anonymouse
nodes: more_triples.txt has two levels of anonymouse nodes, so that the 
triple <_anon002 postCode 555> appears for EnyaEntity.

8/21/2019 INFO319, autumn 2019, session 2 16


