
Data sources and
sinks in Spark

 (CZ, chapter 9 + a little 20)

Data sources in Spark
• from Python objects:

– df = spark.createDataFrame(list_of_tuples, list_of_col_names)
• from file(s):

– df = spark.read.format(format).load(location)
– core data formats:

text, CSV, JSON lines, JDBC/ODBC, Parquet, ORC, AVRO
– community-maintained sources:

Cassandra, HBase, MongoDB, XML,
also Bahir for Spark 2.x (but not structured, and Twitter API v1)

• from streams:
– streaming_df = spark.readStream.format(format).load(location)
– core streaming sources: socket, folder, HDFS, Kafka

spark.read
• df = spark.read.format(format).load(location)
• Generic format:

DataFrameReader \ # i.e., spark.read
.format(…) \ # optional (default is Parquet)
.option("key", "value") \ # some may be mandatory
.schema(...) \ # optional (schema inference on read)
.load()

• Options depend on the format,
• Common options:

.options(‘mode’, …) # permissive, dropMalformed, failFast

.options(‘path’, ...path...) # path to file or folder

Spark schemas
• Schema:

– schema inference, “schema-on-read”
– schema from source (e.g., in Parquet file)
– user-defined schema: df.schema(…schema...)
– from pyspark.sql.type import StructType, StringType, LongType, ...

schema = StructType() \
.add(‘col_1_name’, spark_type, is_null_allowed) \
.add(‘col_2_name’, spark_type, is_null_allowed) \
...

– from pyspark.sql.type import StructType, StructField, StringType, …
schema = StructType([

StructField(‘col_1_name’, StringType(), True),
StructField(‘col_2_name’, LongType(), False),
...

])

Parquet format
• Parquet:

– an open source column-oriented data store
– provides a variety of storage optimizations

• suited for analytics workloads
– provides columnar compression

• saves storage space
• allows for reading individual columns instead of entire files

– Apache Spark’s default file format
– will always be more efficient than JSON or CSV
– supports complex types (i.e., a column of arrays)

Data sinks in Spark
• to Python objects:

– localCollection = df.collect() # df.take(n), df.first()
– iterator = df.toLocalIterator()
– conversions: df.toPandas(), df.rdd, etc.

• to files:
– df.write.format(format).save(folder_name) # writes to a folder

• to streams:
– streaming_df.writeStream. … .start() # the usual action

streaming_df.awaitTermination()
– core streaming sinks:

socket, console, memory, .foreach()-action, folder, HDFS, Kafka

spark.write
• df.write.format(format).save(folder_name) # writes a folder of files
• Generic format:

DataFrameWriter \ # i.e., df.read
.format(…) \
.option(…) \
.partitionBy(…) \ # save to sub-folder per column value
.bucketBy(…) \ # split into files by column value
.sortBy(…) \
.save()

• Options again depend on the format
• Common options:

.options(‘mode’, …) # append, overwrite, errorIfExists, ignore

.options(‘path’, ...path…) # path to folder

Streaming Spark

Spark execution
(CZ, chapter 9 and earlier)

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Applications, drivers and executors
• Spark Application (“user code”):

– a driver process and (one or) many executor processes
• Driver process:

– “the heart of the Spark Application” – runs the main() function
– one-to-one with the SparkSession object
– maintains information about the application
– responds to input from users / programs
– compiles, interprets, and translates

Spark code written in different languages:
Java, Scala, …, Python, R, SQL, ...

– analyses, distributes, and schedules work to the executors
– interfaces with the cluster manager to launch executors

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Applications, drivers and executors
• Spark Application (“user code”):

– a driver process and (one or) many executor processes
• Executor processes:

– responsible for actually carrying out the work assigned by the driver
– executing code assigned to it by the driver

• mostly run Java bytecode
– compiled from Java, Scala, ...
– perhaps from Python, R, …

• can also run other code
– but that can make the job harder for the cluster manager

– reporting the state of its computation back to the driver process
– an executor belongs to only one driver

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Master/driver and worker nodes
• Cluster manager:

– keeps track of the resources available
– one cluster master/driver and one (or more) workers (slaves)
– each runs on a separate machine (metal or virtual)

• called a node
• Master/driver node:

– runs process that create and manage worker processes on other nodes
• Worker (slave) nodes:

– runs processes that do the actual work, for example
– runs the Spark driver and executor processes

• Available cluster managers:
– standalone (built-in), Mesos, (Hadoop) YARN, Kubernetes

Master/driver and worker processes

• A master/driver and one of its workers
can run on the same machine

• Three modes:
– cluster mode, client mode, local mode

Cluster mode Client mode

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Managers and workers

Logical: Cluster level Application level Detail level

HDFS Name node Data node

Hadoop JobTracker TaskTracker

YARN ResourceManager MRAppManager TaskManager

Spark Spark driver Executor & JVM worker

Cluster Master/driver node Worker (slave) node

Machine: Master/driver machine Outside Master/worker machine

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Partitions and executors
• DataFrames are divided into partitions
• Partition:

– a collection of rows that sit on the same executor
– each partition resides in the memory of a single executor
– allow executors to perform work in parallel

• Executors:
– each executor can (and often should) harbour several partitions

• Parallelism is bounded by both
– number of partitions
– number of executors

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Repartitioning and coalescing
• Repartition:

– control the physical layout of data across the cluster
– according to either

• a new number of partitions: df.repartition(n)
• frequently filtered columns: df.repartition(...col...)
• both: df.repartition(n, ...col...)

– incurs a full shuffle of the data
• regardless of whether one is necessary
• (unless you repartition to a smaller number of partitions)

• Coalesce:
– tries to combine partitions: df.coalesce(n)
– does not incur shuffle

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Pipelining and shuffling
• Narrow and wide transformations

– narrow transformations consist of narrow dependencies
• each input partition contributes to only one output partition
• automatic in-memory pipelining (combining transformations)
• no data exchange between executors

– wide transformation consist of wide dependencies
• each input partition contributes to many output partitions
• data is exchanged between executors
• shuffling is disk-based

– previous stages do not have to be repeated
– simpler recovery from executor failure
– can explicitly write to disk with the .cache()-function

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Narrow and wide transformations

Wide trans-
formations
persist the
data to disk

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Jobs, tasks, and stages
• Spark application (“user code”) :

– a series of jobs
– one job corresponds to one action
– a job is a series of stages

• Stage:
– the processing that goes on between two shuffle operations
– a group of tasks that can be executed together to compute the same

operations (pipeline) on multiple executors
• Task:

– run on a single executor
– a unit of computation (pipeline) applied to a unit of data (partition)
– a combination of blocks of data and a set of transformations

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Plans and jobs
• Spark application (“user code”):

– a directed acycilic graph of operations
– transformations and actions are edges
– DataFrames are internal nodes
– data sources, results and sinks are leaf nodes

• Lazy evaluation
– Spark will wait until the very last moment to execute the graph
– the graph is compiled to an optimised plan and executed

• only the necessary parts are executed
• predicate pushdown
• the .explain() -method

Input

Result

Data-
Frame

“Join”

Action

Transfor-
mation

Spark optimisation

Spark optimisation

• Spark UI
• Spark user interface (UI)
• Default localhost:4040 (but check the start-up message)
• Displays information

– the state of your Spark jobs
– its environment
– cluster state

What to do
in two weeks?

...and in the meantime :-)

(c) Andreas L Opdahl, 2022 INFO319: Big Data

• Exercise 2:
– streaming data from the Twitter API with tweepy
– saving to file, sending to socket
– receiving as streaming Spark
– combine with your pipeline from exercise 1

• Project ideas and plans!
• Essay ideas
• Session 3:

– streaming Spark
– Kafka

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

