
Data sources and
sinks in Spark

 (CZ, chapter 9 + a little 20)



Data sources in Spark
• from Python objects: 

– df = spark.createDataFrame(list_of_tuples, list_of_col_names)
• from file(s): 

– df = spark.read.format(format).load(location)
– core data formats:

text, CSV, JSON lines, JDBC/ODBC, Parquet, ORC, AVRO
– community-maintained sources: 

Cassandra, HBase, MongoDB, XML, 
also Bahir for Spark 2.x (but not structured, and Twitter API v1)

• from streams: 
– streaming_df = spark.readStream.format(format).load(location)
– core streaming sources: socket, folder, HDFS, Kafka



spark.read
• df = spark.read.format(format).load(location)
• Generic format:

DataFrameReader \ # i.e., spark.read
.format(…) \ # optional (default is Parquet)
.option("key", "value") \ # some may be mandatory
.schema(...) \ # optional (schema inference on read)
.load()

• Options depend on the format,
• Common options:

.options(‘mode’, …) # permissive, dropMalformed, failFast

.options(‘path’, ...path...) # path to file or folder



Spark schemas
• Schema:

– schema inference, “schema-on-read”
– schema from source (e.g., in Parquet file)
– user-defined schema: df.schema(…schema...)
– from pyspark.sql.type import StructType, StringType, LongType, ...

schema = StructType() \
.add(‘col_1_name’, spark_type, is_null_allowed) \
.add(‘col_2_name’, spark_type, is_null_allowed) \
...

– from pyspark.sql.type import StructType, StructField, StringType, …
schema = StructType([

StructField(‘col_1_name’, StringType(), True),
StructField(‘col_2_name’, LongType(), False),
...

])



Parquet format
• Parquet:

– an open source column-oriented data store
– provides a variety of storage optimizations

• suited for analytics workloads
– provides columnar compression

• saves storage space 
• allows for reading individual columns instead of entire files

– Apache Spark’s default file format
– will always be more efficient than JSON or CSV
– supports complex types (i.e., a column of arrays)



Data sinks in Spark
• to Python objects: 

– localCollection = df.collect()  # df.take(n), df.first()
– iterator = df.toLocalIterator()
– conversions: df.toPandas(), df.rdd, etc.

• to files: 
– df.write.format(format).save(folder_name) # writes to a folder

• to streams: 
– streaming_df.writeStream. … .start() # the usual action

streaming_df.awaitTermination()
– core streaming sinks: 

socket, console, memory, .foreach()-action, folder, HDFS, Kafka



spark.write
• df.write.format(format).save(folder_name)  # writes a folder of files
• Generic format:

DataFrameWriter \ # i.e., df.read
.format(…) \
.option(…) \
.partitionBy(…) \ # save to sub-folder per column value
.bucketBy(…) \ # split into files by column value
.sortBy(…) \
.save()

• Options again depend on the format
• Common options: 

.options(‘mode’, …) # append, overwrite, errorIfExists, ignore

.options(‘path’, ...path…) # path to folder



Streaming Spark



Spark execution
(CZ, chapter 9 and earlier)
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Applications, drivers and executors
• Spark Application (“user code”):

– a driver process and (one or) many executor processes
• Driver process:

– “the heart of the Spark Application” – runs the main() function
– one-to-one with the SparkSession object
– maintains information about the application
– responds to input from users / programs 
– compiles, interprets, and translates 

Spark code  written in different languages: 
Java, Scala, …, Python, R, SQL, ...

– analyses, distributes, and schedules work to the executors
– interfaces with the cluster manager to launch executors
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Applications, drivers and executors
• Spark Application (“user code”):

– a driver process and (one or) many executor processes
• Executor processes:

– responsible for actually carrying out the work assigned by the driver
– executing code assigned to it by the driver

• mostly run Java bytecode
– compiled from Java, Scala, ...
– perhaps from Python, R, …

• can also run other code
– but that can make the job harder for the cluster manager

– reporting the state of its computation back to the driver process
– an executor belongs to only one driver
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Master/driver and worker nodes
• Cluster manager:

– keeps track of the resources available
– one cluster master/driver and one (or more) workers (slaves)
– each runs on a separate machine (metal or virtual)

• called a node
• Master/driver node:

– runs process that create and manage worker processes on other nodes
• Worker (slave) nodes:

– runs processes that do the actual work, for example
– runs the Spark driver and executor processes

• Available cluster managers: 
– standalone (built-in), Mesos, (Hadoop) YARN, Kubernetes



Master/driver and worker processes

• A master/driver and one of its workers 
can run on the same machine

• Three modes: 
– cluster mode, client mode, local mode



Cluster mode Client mode
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Managers and workers

Logical: Cluster level Application level Detail level

HDFS Name node Data node

Hadoop JobTracker TaskTracker

YARN ResourceManager MRAppManager TaskManager

Spark Spark driver Executor & JVM worker

Cluster Master/driver node Worker (slave) node

Machine: Master/driver machine Outside Master/worker machine
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Partitions and executors
• DataFrames are divided into partitions
• Partition:

– a collection of rows that sit on the same executor
– each partition resides in the memory of a single executor
– allow executors to perform work in parallel

• Executors:
– each executor can (and often should) harbour several partitions

• Parallelism is bounded by both 
– number of partitions
– number of executors
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Repartitioning and coalescing
• Repartition:

– control the physical layout of data across the cluster
– according to either

• a new number of partitions: df.repartition(n)
• frequently filtered columns: df.repartition(...col...)
• both: df.repartition(n, ...col...)

– incurs a full shuffle of the data
• regardless of whether one is necessary
• (unless you repartition to a smaller number of partitions)

• Coalesce:
– tries to combine partitions: df.coalesce(n)
– does not incur shuffle
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Pipelining and shuffling
• Narrow and wide transformations

– narrow transformations consist of narrow dependencies
• each input partition contributes to only one output partition
• automatic in-memory pipelining (combining transformations)
• no data exchange between executors

– wide transformation consist of wide dependencies
• each input partition contributes to many output partitions
• data is exchanged between executors
• shuffling is disk-based

– previous stages do not have to be repeated
– simpler recovery from executor failure
– can explicitly write to disk with the .cache()-function
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Narrow and wide transformations

Wide trans-
formations
persist the 
data to disk
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Jobs, tasks, and stages
• Spark application (“user code”) :

– a series of jobs
– one job corresponds to one action
– a job is a series of stages

• Stage: 
– the processing that goes on between two shuffle operations
– a group of tasks that can be executed together to compute the same 

operations (pipeline) on multiple executors
• Task:

– run on a single executor
– a unit of computation (pipeline) applied to a unit of data (partition)
– a combination of blocks of data and a set of transformations
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Plans and jobs
• Spark application (“user code”):

– a directed acycilic graph of operations
– transformations and actions are edges
– DataFrames are internal nodes
– data sources, results and sinks are leaf nodes

• Lazy evaluation
– Spark will wait until the very last moment to execute the graph
– the graph is compiled to an optimised plan and executed

• only the necessary parts are executed
• predicate pushdown
• the .explain() -method

Input

Result

Data-
Frame

“Join”

Action

Transfor-
mation



Spark optimisation



Spark optimisation



• Spark UI
• Spark user interface (UI)
• Default localhost:4040 (but check the start-up message)
• Displays information 

– the state of your Spark jobs
– its environment
– cluster state



What to do
in two weeks?

...and in the meantime :-)
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• Exercise 2:
– streaming data from the Twitter API with tweepy
– saving to file, sending to socket
– receiving as streaming Spark
– combine with your pipeline from exercise 1

• Project ideas and plans!
• Essay ideas
• Session 3:

– streaming Spark
– Kafka
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