Data sources and sinks in Spark (CZ, chapter 9 + a little 20)

Data sources in Spark

- from Python objects:
 - df = spark.createDataFrame(list_of_tuples, list_of_col_names)
- from file(s):
 - df = spark.read.format(format).load(location)
 - core data formats: text, CSV, JSON lines, JDBC/ODBC, Parquet, ORC, AVRO
 - community-maintained sources:
 Cassandra, HBase, MongoDB, XML,
 also Bahir for Spark 2.x (but not structured, and Twitter API v1)
- from streams:
 - streaming_df = spark.readStream.format(format).load(location)
 - core streaming sources: socket, folder, HDFS, Kafka

spark.read

- df = spark.read.format(format).load(location)
- Generic format: DataFrameReader \ .format(...) \ .option("key", "value") \ .schema(...) \ .load()

i.e., spark.read# optional (default is Parquet)# some may be mandatory# optional (schema inference on read)

- Options depend on the format,
- Common options:

 .options('mode', ...)
 .options('path', ...path...)

permissive, dropMalformed, failFast
path to file or folder

Spark schemas

- Schema:
 - schema inference, "schema-on-read"
 - schema from source (e.g., in Parquet file)
 - user-defined schema: df.schema(...schema...)
 - from pyspark.sql.type import StructType, StringType, LongType, ...schema = StructType() \

.add('col_1_name', spark_type, is_null_allowed) \
.add('col_2_name', spark_type, is_null_allowed) \

...

. . .

– from pyspark.sql.type import StructType, StructField, StringType, ...
schema = StructType([

StructField('col_1_name', StringType(), True), StructField('col_2_name', LongType(), False),

Parquet format

- Parquet:
 - an open source column-oriented data store
 - provides a variety of storage optimizations
 - suited for analytics workloads
 - provides columnar compression
 - saves storage space
 - allows for reading individual columns instead of entire files
 - Apache Spark's default file format
 - will always be more efficient than JSON or CSV
 - supports complex types (i.e., a column of arrays)

Data sinks in Spark

- to Python objects:
 - localCollection = df.collect()
 - iterator = df.toLocallterator()
 - conversions: df.toPandas(), df.rdd, etc.
- to files:
 - df.write.format(format).save(folder_name) # writes to a folder

df.take(n), df.first()

the usual action

- to streams:
 - streaming_df.writeStream.start()
 streaming_df.awaitTermination()
 - core streaming sinks: socket, console, memory, .foreach()-action, folder, HDFS, Kafka

spark.write

- df.write.format(format).save(folder_name) # writes a folder of files
- Generic format: DataFrameWriter \
 - .format(...) \ .option(...) \ .partitionBy(...) \ .bucketBy(...) \ .sortBy(...) \ .save()

i.e., df.read

save to sub-folder per column value
split into files by column value

- Options again depend on the format
- Common options:

```
.options('mode', ...)
.options('path', ...path...)
```

append, overwrite, errorlfExists, ignore
path to folder

Streaming Spark

Spark execution (CZ, chapter 9 and earlier)

Applications, drivers and executors

- Spark Application ("user code"):
 - a driver process and (one or) many executor processes
- Driver process:
 - "the heart of the Spark Application" runs the main() function
 - one-to-one with the SparkSession object
 - maintains information about the application
 - responds to input from users / programs
 - compiles, interprets, and translates
 Spark code written in different languages:
 Java, Scala, ..., Python, R, SQL, ...
 - analyses, distributes, and schedules work to the executors
 - interfaces with the *cluster manager* to launch executors

INFO319: Big Data

Applications, drivers and executors

- Spark Application ("user code"):
 - a *driver process* and (one or) many *executor processes*
- Executor processes:
 - responsible for actually carrying out the work assigned by the driver
 - executing code assigned to it by the driver
 - mostly run Java bytecode
 - compiled from Java, Scala, ...
 - perhaps from Python, R, ...
 - can also run other code
 - but that can make the job harder for the cluster manager
 - reporting the state of its computation back to the driver process
 - an executor belongs to only one driver

INFO319: Big Data

Master/driver and worker nodes

- Cluster manager:
 - keeps track of the resources available
 - one cluster *master/driver* and one (or more) *workers* (slaves)
 - each runs on a separate machine (metal or virtual)
 - called a node
- Master/driver node:
 - runs process that create and manage worker processes on other nodes
- Worker (slave) nodes:
 - runs processes that do the actual work, for example
 - runs the Spark driver and executor processes
- Available cluster managers:
 - standalone (built-in), Mesos, (Hadoop) YARN, Kubernetes

INFO319: Big Data

Master/driver and worker processes

- A master/driver and one of its workers can run on the same machine
- Three modes:
 - cluster mode, client mode, local mode

Cluster mode

Client mode

Managers and workers

Logical:	Cluster level	Application level		Detail level		
HDFS	Name node		Data node			
Hadoop	JobTracker			TaskTracker		
YARN	ResourceManager	MRAppManager		TaskManager		
Spark	Spark drive		er	Executor & JVM worker		
Cluster	Master/driver node			Worker (slave) node		
Machine:	Master/driver machine		Outside	Master/worker machine		

(c) Andreas L Opdahl, 2022

INFO319: Big Data

Partitions and executors

- DataFrames are divided into partitions
- Partition:
 - a collection of rows that sit on the same executor
 - each partition resides in the memory of a single executor
 - allow executors to perform work in parallel
- Executors:
 - each executor can (and often should) harbour several partitions
- Parallelism is bounded by both
 - number of partitions
 - number of executors

INFO319: Big Data

Repartitioning and coalescing

- Repartition: •
 - control the physical layout of data across the cluster
 - according to either
 - a new number of partitions: df.repartition(n)
 - frequently filtered columns: df.repartition(...col...)
 - both:

- - df.repartition(*n*, ...*col*...)
- incurs a full shuffle of the data
 - regardless of whether one is necessary
 - (unless you repartition to a smaller number of partitions)
- Coalesce: •
 - tries to combine partitions:

df.coalesce(*n*)

does not incur shuffle

(c) Andreas L Opdahl, 2022

INFO319: Big Data

Pipelining and shuffling

- Narrow and wide transformations
 - narrow transformations consist of narrow dependencies
 - each input partition contributes to only one output partition
 - automatic in-memory pipelining (combining transformations)
 - no data exchange between executors
 - wide transformation consist of wide dependencies
 - each input partition contributes to many output partitions
 - data is exchanged between executors
 - shuffling is *disk-based*
 - previous stages do not have to be repeated
 - simpler recovery from executor failure
 - can explicitly write to disk with the .cache()-function

INFO319: Big Data

Narrow and wide transformations

Narrow transformations 1 to 1

Wide transformations (shuffles) 1 to N

Wide transformations *persist* the data to disk

(c) Andreas L Opdahl, 2022

INFO319: Big Data

Jobs, tasks, and stages

- Spark application ("user code") :
 - a series of jobs
 - one job corresponds to one action
 - a job is a series of stages
- Stage:
 - the processing that goes on between two shuffle operations
 - a group of *tasks* that can be executed together to compute the same operations (pipeline) on multiple executors
- Task:
 - run on a single executor
 - a unit of computation (pipeline) applied to a unit of data (partition)
 - a combination of blocks of data and a set of transformations

(c) Andreas L Opdahl, 2022

INFO319: Big Data

Plans and jobs

- Spark application ("user code"):
 - a directed acycilic graph of operations
 - transformations and actions are edges
 - DataFrames are internal nodes
 - data sources, results and sinks are leaf nodes
- Lazy evaluation
 - Spark will wait until the very last moment to execute the graph
 - the graph is compiled to an optimised plan and executed
 - only the necessary parts are executed
 - predicate pushdown
 - the .explain() -method

INFO319: Big Data

Spark optimisation

Physical Plan

Spark optimisation

- Spark UI
 - Spark user interface (UI)
 - Default localhost:4040 (but check the start-up message)
 - Displays information
 - the state of your Spark jobs
 - its environment
 - cluster state

0 (442095639162785772_5532783187248264704_ab36733a32cf4803ac65a3ca545110be)

Spark UI

Hostname: ec2-35-167-29-186.us-west-2.compute.amazonaws.com Spark Version:	2.1.0				
Jobs Stages Storage Environment Executors SQL JDBC	ODBC Server				
Spark Jobs ^(?)					
User: root Total Uptime: 39 min Scheduling Mode: FAIR Completed Jobs: 2					
Event Timeline					
Completed Jobs (2)					
Job Id (Job Group) 🔻	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
1 (3600493050522868552 5147566918362167263 1b1c589736794803a82581288fa2	d915) divisBy2.count()	2017/01/19 17:22:51	91 ms	2/2	9/9

2017/01/19 17:22:50

0.8 \$

2/2

9/9

count at NativeMethodAccessorImpl.java:0

divisBy2.count()

count at <console>:33

What to do in two weeks? ...and in the meantime :-)

- Exercise 2:
 - streaming data from the Twitter API with tweepy
 - saving to file, sending to socket
 - receiving as streaming Spark
 - combine with your pipeline from exercise 1
- Project ideas and plans!
- Essay ideas
- Session 3:
 - streaming Spark
 - Kafka

INFO319: Big Data