
Apache Kafka

(c) Andreas L Opdahl, 2022 INFO319: Big Data

What is event streaming?
• Event streaming:

– capturing data in real-time from event sources, such as
• sensors/IoT, mobile devices, social media, cloud services,

databases, other software applications
– storing these event streams durably for later retrieval
– manipulating, processing, and reacting to event streams

• in real-time or retrospectively
– routing the event streams to different destinations
– ensures a continuous flow and interpretation of data so that

the right information is at the right place, at the right time
– «technological foundation for the 'always-on' world»

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Uses of event streaming
• Most industries and organizations

– process payments and financial transactions in real-time
– track and monitor vehicles and shipments in real-time
– continuously capture and analyze sensor data from IoT devices

and other types of equipment
– collect and immediately react to customer interactions
– monitor patients in hospital care
– predict changes in condition to ensure timely treatment
– connect, store, and make available data produced by different

divisions of a company
– serve as the foundation for data platforms, event-driven

architectures, and microservices

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Messaging systems
• A messaging system:

– manages communication between the components of a
distributed system

– supports the sending and receiving of messages
• Main task:

– reliably moving messages from sending to receiving machines
• Concerns:

– performance, synchronisation, queueing
– reliability (exactly-one, at-least-once, best-effort)
– scalability, fault-tolerance (distribution, redundancy...)
– ...and a lot more

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Apache Kafka
• Apache Kafka is

– a scalable, distributed system of servers and clients that
communicate events (data) via a network protocol.

– an event streaming platform
• in Kafka, «event» means «data that describes an event»

• Combines three key capabilities:
– publish (write) and subscribe to (read) streams of events

• including continuous import from/export to other systems
– store streams of events durably and reliably as wanted
– process streams of events in real time or retrospectively

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Kafka goals
• Design goals:

– distributed, highly scalable, elastic, and secure
– fault-tolerant:

• machine failure or network problems
• other servers take over for failed/unresponsive servers to

ensure continuous operations without data loss
– deployable on bare-metal hardware, virtual machines, and

in containers
– local, self-managed, or fully-managed cloud services

• Complete and field-tested end-to-end solution

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Kafka events
• Event:

– records the fact that "something happened" in the world or
in your business

• also called record or message
– reading/writing data from/to Kafka is in the form of events
– an event has

• a key ("Alice")
• a value ("Made a payment of $200 to Bob")
• a timestamp ("Jun. 25, 2020 at 2:06 p.m.")
• optional metadata headers

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Kafka servers
• Kafka cluster:

– one or more servers
– can span multiple datacenters or cloud regions
– command line tools for management and administration tasks
– programming APIs: native and third party

• Brokers: storage layer for events (in-memory and on disk)
• Connectors:

– continuously import and export event streams
– integrate Kafka with your existing systems such as relational databases

as well as other Kafka clusters.
– Kafka Connect API

• Zookeeper: keeps track of everything

https://hevodata.com/
learn/kafka-clusters/#t3

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Kafka clients
• Clients:

– implement distributed applications and microservices
– read, process, and write streams of events (data) in parallel
– run on the same or on different machines from the Kafka cluster
– producers: send messages to the Kafka Connectors
– consumers: receive messages from the Kafka Connectors

• Kafka ships with client APIs:
– REST APIs
– Java, Scala, the higher-level Kafka Streams library...

• Lots of third-party clients
– including for Python and Spark

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Client decoupling
• Kafka clients (producers and consumers) are:

– fully decoupled from each other
– agnostic of each other
– communication

• over TCP
• using Kafka protocols
• to exchange events (data)

– contributes to high scalability
• e.g., producers never need to wait for consumers

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Topics
• Events are organized and durably stored in topics

– similar to a folder in a filesystem
– the events (data) are the files in that folder, e.g.,

"payments", "tweets", "sentiments"...
• Kafka Topics are:

– multi-producer: a topic can have zero, one, or many
producers that write (produce) events to it

– multi-subscriber: a topic can have zero, one, or many
consumers that read (subscribe to) its events

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Topic durability
• Events in a topic

– can be read as often as needed
– not deleted by consumption
– the user-defines for how long Kafka should retain events
– a per-topic configuration setting
– performance is effectively constant with respect to data size
– storing data for a long time is perfectly fine.

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Partitions
• A topic is spread over a number of «buckets»
• Buckets are located on different Kafka brokers
• When a new event is published to a topic, it is actually

appended to one of the topic's partitions
• Events with the same event key (e.g., a customer or tweet ID)

are written to the same partition
• Distributed placement of your data is essential for scalability

– clients can read/write data from/to many brokers in parallel
• Kafka guarantees topic-partition sequence

– but not overall topic sequence

Partitions

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Topic replication
• Replication:

– across cluster machines, datacenters, or geo-regions
– every topic can be replicated
– performed at the level of topic-partitions
– provides fault-tolerance and high-availability

• always multiple brokers that have a copy of the data
• in case of broker failure, maintenance...

– replication factor of 3 is common

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Kafka APIs
• Core Kafka APIs for Java and Scala:

– Admin API: manage and inspect topics, brokers, other objects
– Producer API: to publish (write) streams of events topics
– Consumer API: subscribe to (read) one or more topics and process

streams of events
– Streams API: for streaming applications and microservices

• some overlap with Spark...
• transformations, aggregations, joins, windowing, event times

– Connect API: build and run reusable data importers/exporters
• consume (read) or produce (write) streams of events from

or to external systems and applications
• Kafka community provides lots of ready-to-use connectors.

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Running Kafka
• Standalone: Exercise 3
• Standalone with Streaming Spark: Exercise 3
• On a cluster in the next exercises

(c) Andreas L Opdahl, 2022 INFO319: Big Data

Programming with Kafka
• Start Kafka and create topics from command line
• From plain Python:

– Exercise 3 will use python-kafka:
– !pip install python-kafka
– from kafka import KafkaProducer, KafkaConsumer, etc.

• From streaming Spark:
– Exercise 3 will use spark-sql-kafka
– imports python-kafka «under the hood»
– important to get the Scala and Spark versions right

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

