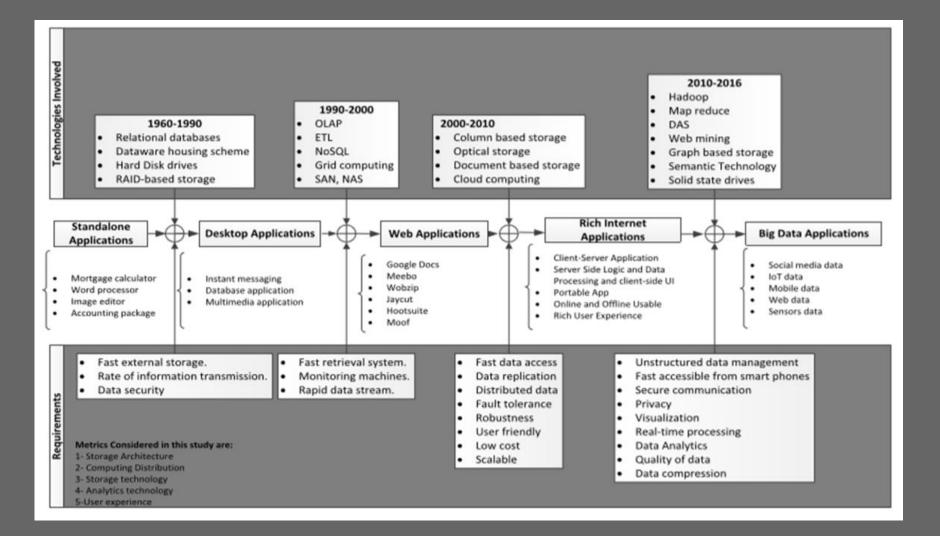
BIG DATA

FROM BEGINNING TO FUTURE



ORIGINS OF BIG DATA APPLICATIONS

- Consideration during the research:
 - Application architecture
 - Chronological development
 - Gradual evaluation
- Five metrics:
 - Storage architecture
 - Computing distribution
 - Storage technology
 - Analytics technology
 - User Experience

TRENDS

- 90% of the data has been generated the last two years (Science Daily, 2016)
- Increase in demand for skills in Big data.
- Annual growth rate during the 1990s / annual growth rate in 1998.
- Growth rate of data (fig on next slide).

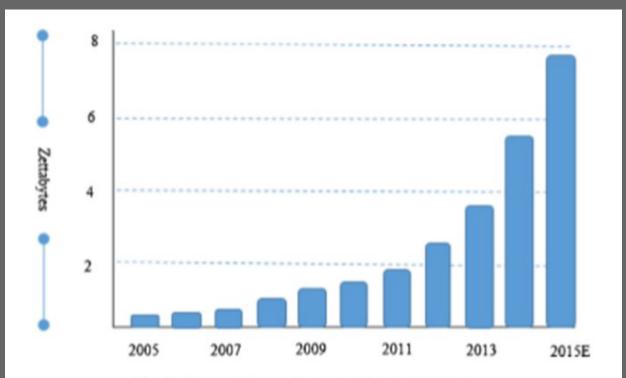


Fig. 2. The rapid growth rate of data in Zettabytes.

SOURCES OF BIG DATA

- E-mail services
- Internet of Things (GPS, mobiles, intelligent clothing, alarms, blinds, window sensors etc)
- Self-Quantified
- Multimedia
- Social media

BIG DATA HANDLING

- BATCHED BASED
 - Apache Hadoop
 - Skytree Server
 - Talend Open Studio
 - Jaspersoft
 - Dryad
 - Tableau
 - Karmasphere

- STREAM PROCESSING
 - Storm
 - o \$4
 - SQL Stream
 - Splunk
 - Apache Kafka
 - SAP Hana

BIG DATA METHODS

- Hashing
- Bloom Filter
- Indexing
- Parallell computing

AREAS TO BE EXPLORED

- Graph processing
- Heterogenous computing
- Hybrid computing
- In memory processing

BIG DATA TECHNIQUES

- Data Mining
- Web Mining
 - Web Content Mining
 - Web Structure Mining
- Visualization Methods
- Machine Learning
 - Supervised
 - Unsupervised
- Optimization Methods
- Social Network Analysis (SNA)

AREAS TO BE EXPLORED

- Distributed Mining
- Scalable Machine Learning
- Time Variable data
- Mining from Sparse data

OPEN RESEARCH CHALLENGES

- NoSQL
- High-performance computing systems
- Big Data indexing schemes
- Analytics
- Data quality
- Visualization
- Big data security

Future Technologies	Potentially Marginalized Technologies	Brief Description	References
Cloud computing	 Virtualization Software-defined networking 	Provides on demand data storage service.	Hashem et al. (2015), Abolfazli et al. (2015), Yousafzai et al. (2016a.b)
Granular computing	 Discretization Type-2 fuzzy sets and systems 	Divides data into smaller modules, and aggregate all the modules after completion of the specific task,	Pedrycz (2013)
Software-defined storage	 Storage Virtualization Storage resource Management 	Separates the hardware from the software and makes flexible data processing.	Rouse (2014) and Akhunzada et al. (2015)
Stream computing	 Object-oriented programming Smalltalk library standard 	Delivers real-time analytic processing on constantly changing data in motion,	Bayoumi et al. (2009)
Artificial intelligence	 Optimization Neural networks Big data mining IoT mining 	Help to make intelligent devices,	Charniak et al. (2014)
Parallel computing	 Distributed computing 	Makes process execution fast,	Darriba et al. (2012)
Bio-inspired computing	 Immune systems Lindermayer systems Membrane computers 	Provides high-efficiency by incorporating several new factors such as robustness, scalability and flexibility in the computational tools.	Castillo and Melin (2012)
Fourth generation optical disks	 3D optical data storage. Holographic data storage 	Provides efficient data storage.	Hamann et al. (2006)
Quantum computing	 Electronic computing Optical computing, Quantum clock 	Much faster computing, for some kinds of problems, chemical modeling, new materials with programmed properties, Hypothetical of high-temperature superconductivity and superfluidity,	Finch et al. (2014)
Smart grid computing	 Image processing 	Provides access to resources (systems, data, applications, and services) via the Internet.	Fang et al. (2012)
Optical computing	LaserTransistor	Allows a higher bandwidth than the electrons used in conventional computers.	Woods and Naughton (2012)
Quantum cryptography	 Public-key encryption Signature schemes 	Helps in performing cryptographic tasks.	Gilbert and Weinstein (2014)
Semantic web	 SPARQL Notation3 Web ontology language 	Enables users to find, share and combine information more easily.	Berners-Lee and Hendler (2001)
Edge Computing	 Fog computing Mobile edge computing Cloudlet 	Facilitates the users by bringing computation down towards the edge of the network.	Ahmed and Ahmed (2016), Jararweh et al. (2016) and Satyanarayanan et al. (2015)

BIG DATA

FROM BEGINNING TO FUTURE

